सममित घटक

From Vigyanwiki
Revision as of 21:45, 8 February 2023 by alpha>Ashutoshyadav

विद्युत अभियन्त्रण में, सममित घटकों की विधि सामान्य और असामान्य दोनों स्थितियों के अंतर्गत असंतुलित तीन-फ़ेजर विद्युत प्रणालियों के विश्लेषण को सरल बनाती है। मूल विचार यह है कि समिश्र संख्या रैखिक रूपांतरण के माध्यम से N फ़ेजर के एक असममित समुच्चय को फ़ेजर के N सममित समुच्चयों के एक रैखिक संयोजन के रूप में व्यक्त किया जा सकता है।[1] फोर्टेस्क्यू का प्रमेय (सममित घटक) सुपरपोजिशन सिद्धांत सिद्धांत पर आधारित है[2] इसलिए यह केवल रैखिक विद्युत प्रणालियों पर प्रयुक्त होता है, या गैर-रैखिक विद्युत प्रणालियों के रैखिक अनुमानों पर प्रयुक्त होता है।

तीन-फ़ेजर प्रणालियों की सबसे सामान्य स्थिति में, परिणामी सममित घटकों को प्रत्यक्ष या धनात्मक, उत्क्रमित या ऋणात्मक और शून्य या एकाधिक के रूप में संदर्भित किया जाता है। सममित घटकों के क्षेत्र में ऊर्जा प्रणाली का विश्लेषण बहुत सरल होता है क्योंकि, यदि परिपथ स्वयं संतुलित है तो परिणामी समीकरण पारस्परिक रूप से एकघाततः स्वतंत्र होते हैं।[citation needed]

विवरण

1918 में चार्ल्स लेगेट फोर्टेस्क्यू ने एक पेपर प्रस्तुत किया [3] जिसमें दिखाया गया कि N असंतुलित फ़ेजर के किसी भी समुच्चय (अर्थात, ऐसा कोई पॉलीपेज़ संकेत) N के मानों के लिए संतुलित फ़ेजर के N सममित समुच्चयों के योग के रूप में व्यक्त किया जा सकता है, जो फ़ेजर द्वारा केवल एकल आवृत्ति घटक का प्रतिनिधित्व करता है।

1943 में एडिथ क्लार्क ने तीन-फ़ेजर प्रणालियों के लिए सममित घटकों के उपयोग की एक विधि देते हुए एक पाठ्यपुस्तक प्रकाशित किया। जिसने मूल फोर्टेस्क पेपर की तुलना में गणनाओं को बहुत सरल बना दिया था। [4] तीन-फ़ेजर प्रणाली में, फ़ेजर के एक समुच्चय में अध्ययन के अंतर्गत प्रणाली मे समान फ़ेजर अनुक्रम होता है जिसे धनात्मक अनुक्रम एसीबी कहते हैं, दूसरे समुच्चय में निश्चित फ़ेजर अनुक्रम को ऋणात्मक अनुक्रम एसीबी कहा जाता है और तीसरे समुच्चय में फ़ेजर ए, बी और सी एक दूसरे के साथ फ़ेजर में होते हैं जिसे शून्य अनुक्रम या सामान्य-मोड संकेत अनुक्रम कहा जाता है। अनिवार्य रूप से, यह विधि तीन असंतुलित फ़ेजर को तीन स्वतंत्र स्रोतों में परिवर्तित करती है जो असममित त्रुटि विश्लेषण को अधिक सरल बनाती है।

धनात्मक अनुक्रम, ऋणात्मक अनुक्रम और विद्युत जनित्र, परिवर्तक और ओवरहेड लाइनों और केबलों सहित अन्य उपकरणों के शून्य अनुक्रम प्रतिबाधा को दिखाने के लिए एक-पंक्ति आरेख का विस्तार करके, इस तरह की असंतुलित स्थितियों का विश्लेषण स्थिर लघु-परिपथ त्रुटि के लिए एक पंक्ति के रूप में बहुत अधिक सरलीकृत होता है। तकनीक को उच्च क्रम फ़ेजर प्रणालियों तक भी विस्तृत किया जा सकता है।

भौतिक रूप से तीन-फ़ेजर प्रणाली में, धाराओं का एक धनात्मक अनुक्रम समुच्चय एक सामान्य घूर्णन क्षेत्र उत्पन्न करता है और ऋणात्मक अनुक्रम समुच्चय के विपरीत घूर्णन के साथ एक क्षेत्र को उत्पन्न करता है और शून्य अनुक्रम समुच्चय एक ऐसा क्षेत्र उत्पन्न करता है जो दोलन करता है लेकिन फ़ेजर कुंडली के बीच घूर्णन नहीं करता है। चूंकि इन प्रभावों को भौतिक रूप से अनुक्रम फ़ेजर के साथ यह पता लगाया जा सकता है कि गणितीय उपकरण सुरक्षात्मक रिले की संरचना का मूल आधार है, जो ऋणात्मक-अनुक्रम वोल्टेज और धाराओं को त्रुटि की स्थिति के विश्वसनीय संकेतक के रूप में उपयोग करता है। इस प्रकार के रिले का उपयोग परिपथ वियोजक का खंडन करने या विद्युत प्रणाली की सुरक्षा करने के लिए किया जा सकता है।

विश्लेषणात्मक तकनीक को सामान्य विद्युत और वेस्टिंगहाउस में इंजीनियरों द्वारा स्वीकृत और प्रस्तुत किया गया था जो द्वितीय विश्व युद्ध के बाद से यह असममित त्रुटि विश्लेषण के लिए एक स्वीकृत तरीका बन गया है।

जैसा कि ऊपर दाईं ओर के चित्र में दिखाया गया है कि सममित घटकों के तीन समुच्चय (धनात्मक, ऋणात्मक और शून्य अनुक्रम) तीन असंतुलित फ़ेजरों को प्रणाली बनाने के लिए जोड़ते हैं जैसा कि आरेख के निचले भाग में चित्रित किया गया है। सदिश के समुच्चय के बीच परिमाण और फ़ेजर परिवर्तन में अंतर के कारण फ़ेजर के बीच असंतुलन उत्पन्न होता है। ध्यान दें कि अलग-अलग अनुक्रम सदिश के रंग (लाल, नीला और पीला) तीन अलग-अलग फ़ेजर (उदाहरण के लिए ए, बी और सी) के अनुरूप हैं। अंतिम आलेख पर पहुंचने के लिए, प्रत्येक फ़ेजर के सदिशों के योग की गणना की जाती है। यह परिणामी सदिश उस विशेष फ़ेजर का प्रभावी फेजर प्रतिनिधित्व होता है। यह प्रक्रिया, बार-बार तीन चरणों में से प्रत्येक के लिए फेजर का निर्माण करती है।

तीन चरण की स्थिति

तीन चरण विद्युत ऊर्जा प्रणालियों के विश्लेषण के लिए सममित घटकों का सबसे अधिक उपयोग किया जाता है। किसी बिंदु पर तीन-फ़ेजर प्रणाली के वोल्टेज या करंट को तीन-फ़ेजर द्वारा इंगित किया जा सकता है, जिसे वोल्टेज या करंट के तीन घटक कहा जाता है।

यह लेख वोल्टेज पर चर्चा करता है; हालाँकि, वही विचार वर्तमान पर भी प्रयुक्त होते हैं। पूरी तरह से संतुलित तीन-फ़ेजर विद्युत व्यवस्था में, वोल्टेज फेजर घटकों के समान परिमाण होते हैं लेकिन 120 डिग्री अलग होते हैं। एक असंतुलित प्रणाली में, वोल्टेज फेजर घटकों के परिमाण और फ़ेजर भिन्न होते हैं।

वोल्टेज फेजर घटकों को सममित घटकों के एक समुच्चय में विघटित करने से प्रणाली का विश्लेषण करने के साथ-साथ किसी भी असंतुलन की कल्पना करने में मदद मिलती है। यदि तीन वोल्टेज घटकों को फ़ेजर (जो समिश्र संख्याएं हैं) के रूप में व्यक्त किया जाता है, तो एक जटिल सदिश बनाया जा सकता है जिसमें तीन-फ़ेजर घटक सदिश के घटक होते हैं। तीन-फ़ेजर वोल्टेज घटकों के लिए एक सदिश के रूप में लिखा जा सकता है

और सदिश को तीन सममित घटकों में विघटित करना देता है

जहां सबस्क्रिप्ट 0, 1 और 2 क्रमशः शून्य, धनात्मक और ऋणात्मक अनुक्रम घटकों को संदर्भित करते हैं। अनुक्रम घटक केवल उनके फ़ेजर कोणों से भिन्न होते हैं, जो सममित हैं और इसलिए हैं रेडियंस या 120°.

एक आव्यूह

फेजर रोटेशन ऑपरेटर को परिभाषित करें , जो फेजर सदिश को इसके द्वारा गुणा किए जाने पर वामावर्त 120 डिग्री घुमाता है:

.

ध्यान दें कि ताकि .

शून्य अनुक्रम घटकों में समान परिमाण होता है और एक दूसरे के साथ फ़ेजर में होते हैं, इसलिए:

,

और अन्य अनुक्रम घटकों का परिमाण समान होता है, लेकिन उनके फ़ेजर कोणों में 120° का अंतर होता है। यदि वोल्टेज फ़ेजर के मूल असंतुलित समुच्चय में धनात्मक या एबीसी फ़ेजर अनुक्रम होता है, तो:

,
,

मतलब है कि

,
,
,
.

इस प्रकार,

कहाँ पे

यदि इसके बजाय वोल्टेज फ़ेजर के मूल असंतुलित समुच्चय में ऋणात्मक या एसीबी फ़ेजर अनुक्रम होता है, तो निम्न आव्यूह समान रूप से प्राप्त किया जा सकता है:


अपघटन

अनुक्रम घटक विश्लेषण समीकरण से प्राप्त होते हैं

कहाँ पे

उपरोक्त दो समीकरण बताते हैं कि तीन-फ़ेजर के एक विषम समुच्चय के अनुरूप सममित घटकों को कैसे प्राप्त किया जाए:

  • अनुक्रम 0 मूल तीन-फ़ेजर के योग का एक तिहाई है।
  • अनुक्रम 1 वामावर्त 0°, 120°, और 240° घुमाए गए मूल तीन-फ़ेजर के योग का एक-तिहाई है।
  • अनुक्रम 2 वामावर्त 0°, 240°, और 120° घुमाए गए मूल तीन-फ़ेजर के योग का एक-तिहाई है।

दृष्टिगत रूप से, यदि मूल घटक सममित हैं, अनुक्रम 0 और 2 प्रत्येक त्रिभुज का निर्माण करेंगे, जिसका योग शून्य होगा, और अनुक्रम 1 घटक एक सीधी रेखा में योग करेंगे।

अंतर्ज्ञान

नेपोलियन की प्रमेय: यदि L, M, और N पर केन्द्रित त्रिभुज समबाहु हैं, तो हरा त्रिभुज भी ऐसा ही है।

फ़ेजर एक बंद त्रिकोण बनाएं (उदाहरण के लिए, बाहरी वोल्टेज या लाइन से लाइन वोल्टेज)। फ़ेजर के तुल्यकालिक और व्युत्क्रम घटकों को खोजने के लिए, बाहरी त्रिकोण के किसी भी पक्ष को लें और चयनित पक्ष को आधार के रूप में साझा करते हुए दो संभावित समबाहु त्रिभुज बनाएं। ये दो समबाहु त्रिभुज एक तुल्यकालिक और एक व्युत्क्रम प्रणाली का प्रतिनिधित्व करते हैं।

यदि फ़ेजर V पूरी तरह से तुल्यकालिक प्रणाली थे, तो आधार रेखा पर बाहरी त्रिभुज का शीर्ष उसी स्थिति में नहीं होगा, जैसा कि समकालिक प्रणाली का प्रतिनिधित्व करने वाले समबाहु त्रिभुज के संगत शीर्ष पर होता है। व्युत्क्रम घटक की किसी भी मात्रा का अर्थ इस स्थिति से विचलन होगा। विचलन व्युत्क्रम फ़ेजर घटक का ठीक 3 गुना है।

तुल्यकालिक घटक उसी तरह से उलटा समबाहु त्रिभुज से विचलन का 3 गुना है। प्रासंगिक फ़ेजर के लिए इन घटकों के निर्देश सही हैं। ऐसा लगता है कि यह सभी तीन-फ़ेजर के लिए काम करता है, चाहे चुने गए पक्ष की परवाह किए बिना, लेकिन यह इस चित्रण की सुंदरता है। ग्राफिक नेपोलियन के प्रमेय से है, जो एक ग्राफिकल गणना तकनीक से मेल खाता है जो कभी-कभी पुरानी संदर्भ पुस्तकों में प्रकट होता है।[5]


पॉली-फेज केस

यह देखा जा सकता है कि उपरोक्त परिवर्तन आव्यूह एक असतत फूरियर रूपांतरण है, और इस प्रकार, किसी भी बहु-फ़ेजर प्रणाली के लिए सममित घटकों की गणना की जा सकती है।

3-फ़ेजर विद्युत प्रणालियों में सममित घटकों में हार्मोनिक्स का योगदान

गैर-रैखिक भार के परिणामस्वरूप हार्मोनिक्स (विद्युत शक्ति) अक्सर विद्युत प्रणालियों में होते हैं। हार्मोनिक्स का प्रत्येक क्रम विभिन्न अनुक्रम घटकों में योगदान देता है। आदेश के मौलिक और हार्मोनिक्स धनात्मक अनुक्रम घटक में योगदान देगा। आदेश के हार्मोनिक्स ऋणात्मक अनुक्रम में योगदान देगा। आदेश के हार्मोनिक्स शून्य अनुक्रम में योगदान करें।

ध्यान दें कि उपरोक्त नियम केवल तभी प्रयुक्त होते हैं जब प्रत्येक फ़ेजर में फ़ेजर मान (या विरूपण) बिल्कुल समान हों। कृपया आगे ध्यान दें कि पावर प्रणाली में हार्मोनिक्स भी आम नहीं हैं।

पावर प्रणाली्स में शून्य अनुक्रम घटक का परिणाम

शून्य अनुक्रम असंतुलित फ़ेजर के घटक का प्रतिनिधित्व करता है जो परिमाण और फ़ेजर में बराबर होता है। क्योंकि वे फ़ेजर में हैं, एक N-फ़ेजर नेटवर्क के माध्यम से बहने वाली शून्य अनुक्रम धाराएं व्यक्तिगत शून्य अनुक्रम धाराओं के घटकों के परिमाण का n गुना योग करेंगी। सामान्य परिचालन स्थितियों के अंतर्गत यह राशि नगण्य होने के लिए काफी छोटी है। हालांकि, बड़े शून्य अनुक्रम की घटनाओं जैसे कि विद्युत गिरने के दौरान, धाराओं का यह गैर-शून्य योग व्यक्तिगत फ़ेजर कंडक्टरों की तुलना में तटस्थ कंडक्टर के माध्यम से एक बड़ा प्रवाह पैदा कर सकता है। क्योंकि तटस्थ कंडक्टर आमतौर पर व्यक्तिगत फ़ेजर कंडक्टरों से बड़े नहीं होते हैं, और अक्सर इन कंडक्टरों की तुलना में छोटे होते हैं, एक बड़ा शून्य अनुक्रम घटक तटस्थ कंडक्टरों और आग को गर्म करने का कारण बन सकता है।

बड़े शून्य अनुक्रम धाराओं को रोकने का एक तरीका डेल्टा कनेक्शन का उपयोग करना है, जो शून्य अनुक्रम धाराओं के लिए एक खुले परिपथ के रूप में प्रकट होता है। इस कारण से, डेल्टा का उपयोग करके अधिकांश संफ़ेजर और बहुत उप-संफ़ेजर प्रयुक्त किया जाता है। डेल्टा का उपयोग करके बहुत अधिक वितरण भी प्रयुक्त किया जाता है, हालांकि पुरानी कार्य वितरण प्रणाली को कभी-कभी वाईड-अप (डेल्टा-वाई ट्रांसफार्मर से डेल्टा-वाई ट्रांसफॉर्मर में परिवर्तित) किया जाता है ताकि लाइन की क्षमता को कम परिवर्तित लागत पर बढ़ाया जा सके, लेकिन इसकी कीमत पर एक उच्च केंद्रीय स्टेशन सुरक्षात्मक रिले लागत।

बड़े शून्य अनुक्रम धाराओं को रोकने का एक तरीका डेल्टा कनेक्शन का उपयोग करना है, जो शून्य अनुक्रम धाराओं के लिए एक खुले परिपथ के रूप में प्रकट होता है। इस कारण से, डेल्टा का उपयोग करके अधिकांश संफ़ेजर और बहुत उप-संफ़ेजर प्रयुक्त किया जाता है। डेल्टा का उपयोग करके बहुत अधिक वितरण भी प्रयुक्त किया जाता है, हालांकि "पुराने काम" वितरण प्रणाली को कभी-कभी "वायड-अप" (डेल्टा से वाई में परिवर्तित) किया जाता है ताकि लाइन की क्षमता को कम परिवर्तित लागत पर बढ़ाया जा सके लेकिन उच्च केंद्रीय स्टेशन की कीमत पर सुरक्षात्मक रिले लागत।

यह भी देखें

संदर्भ

Notes
  1. Hadjsaïd, Nouredine; Sabonnadière, Jean-Claude (2013). Power Systems and Restructuring. John Wiley & Sons. p. 244. ISBN 9781118599921.
  2. Mathis, Wolfgang; Pauli, Rainer (1999). Network Theorems. doi:10.1002/047134608X.W2507. ISBN 047134608X. […] the results of Fortescue […] are proven by the superposition theorem, and for this reason, a direct generalization to nonlinear networks is impossible. {{cite book}}: |website= ignored (help)
  3. Charles L. Fortescue, "Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks". Presented at the 34th annual convention of the AIEE (American Institute of Electrical Engineers) in Atlantic City, N.J. on 28 June 1918. Published in: AIEE Transactions, vol. 37, part II, pages 1027–1140 (1918). For a brief history of the early years of symmetrical component theory, see: J. Lewis Blackburn, Symmetrical Components for Power Engineering (Boca Raton, Florida: CRC Press, 1993), pages 3–4.
  4. Gabriele Kass-Simon, Patricia Farnes, Deborah Nash (ed), Women of Science: Righting the Record , Indiana University Press, 1993, ISBN 0253208130. pages 164-168
  5. Wagner, C. F.; Evans, R. D. (1933). Symmetrical Components. New York and London: McGraw Hill. p. 265.
Bibliography
  • J. Lewis Blackburn Symmetrical Components for Power Systems Engineering, Marcel Dekker, New York (1993). ISBN 0-8247-8767-6
  • William D. Stevenson, Jr. Elements of Power System Analysis Third Edition, McGraw-Hill, New York (1975). ISBN 0-07-061285-4.
  • History article from IEEE on early development of symmetrical components, retrieved May 12, 2005.
  • Westinghouse Corporation, Applied Protective Relaying, 1976, Westinghouse Corporation, no ISBN, Library of Congress card no. 76-8060 - a standard reference on electromechanical protective relays