बाल्मर शृंखला
बामर श्रृंखला, या परमाणु भौतिकी में बामर प्रणाली, हाइड्रोजन परमाणु के वर्णक्रमीय प्रणाली प्रसार का वर्णन करने वाली छह नामित श्रृंखलाओं में से एक है। बामर श्रृंखला की गणना बामर सूत्र का उपयोग करके की जाती है, जो जोहान बामर द्वारा 1885 में खोजा गया एक आनुभविक समीकरण है।
हाइड्रोजन से प्रकाश का दृश्यमान वर्णक्रम (स्पेक्ट्रम) चार तरंग दैर्ध्य , 410 एनएम, 434 एनएम, 486 एनएम और 656 एनएम को प्रदर्शित करता है,जो मुख्य परिमाण (क्वांटम ) संख्या n = 2 द्वारा वर्णित परिमाण स्तर पर परिवर्तन वाले संदीप्त अवस्था में इलेक्ट्रॉनों द्वारा फोटॉनों के प्रसार के अनुरूप है।[1] 400 एनएम से कम तरंग दैर्ध्य वाली पराबैंगनी एक विशिष्ट बामर प्रणाली हैं। इन पंक्तियों की संख्या एक अनंत अबाधक्रम है क्योंकि यह पराबैंगनी में 364.5 एनएम की सीमा तक पहुंचती है।
बामर की खोज के बाद, पांच अन्य हाइड्रोजन वर्णक्रमीय श्रृंखला की खोज की गई, जो दो इलेक्ट्रॉनों के अलावा n के मानो में परिवर्तन के अनुरूप है।
संक्षिप्त विवरण
बामर श्रृंखला की n ≥ 3 से n = 2 तक इलेक्ट्रॉन परिवर्तन की विशेषता है, जहां n त्रिज्य परिमाण क्रमांक या इलेक्ट्रॉन का प्रमुख परिमाण क्रमांक को संदर्भित करता है। परिवर्तनो को ग्रीक वर्ण द्वारा क्रमिक रूप से नामित किया गया है: n = 3 से n = 2 को H-α कहा जाता है, 4 से 2 को H-β, 5 से 2 को H-γ, और 6 से 2 को H-δ कहा जाता है। चूँकि इस श्रृंखला से जुड़ी पहली वर्णक्रमीय पंक्तियां विद्युत चुम्बकीय वर्णक्रम के दृश्य भाग में स्थित हैं, इन पंक्तियों को ऐतिहासिक रूप से "एच-अल्फ़ा", "एच-बीटा", "एच-गामा", और इसी तरह से संदर्भित किया जाता है। H तत्व हाइड्रोजन है।
n का पारगमन 3→2 4→2 5→2 6→2 7→2 8→2 9→2 ∞→2 शीर्षक H-α / Ba-α H-β / Ba-β H-γ / Ba-γ H-δ / Ba-δ H-ε / Ba-ε H-ζ / Ba-ζ H-η / Ba-η बामर ब्रेक तरंग दैर्घ्य (एनएम,वायु) 656.279[2] 486.135[2] 434.0472[2] 410.1734[2] 397.0075[2] 388.9064[2] 383.5397[2] 364.6 शेष ऊर्जा (eV) 1.89 2.55 2.86 3.03 3.13 3.19 3.23 3.40 रंग लाल जलीय नीला बैंगनी (पराबैंगनी) (पराबैंगनी) (पराबैंगनी) (पराबैंगनी)
हालांकि भौतिकविदों को 1885 से पहले परमाणु प्रसार के बारे में पता था, लेकिन उनके पास सटीक भविष्यवाणी करने के लिए एक उपकरण की कमी थी जहां वर्णक्रमीय रेखाएं दिखाई देनी चाहिए। बामर समीकरण उच्च सटीकता के साथ हाइड्रोजन की चार दृश्य वर्णक्रमीय पंक्तियों की भविष्यवाणी करता है। बामर के समीकरण ने इसके व्यापकीकरण के रूप में रिडबर्ग समीकरण को प्रेरित किया, और इसके बदले में भौतिकविदों ने लाइमैन ,पास्चेन और ब्रैकेट श्रृंखला को खोजने के लिए प्रेरित किया, जिसने दृश्यमान वर्णक्रम के बाहर पाए जाने वाले हाइड्रोजन की अन्य वर्णक्रमीय पंक्तियों की भविष्यवाणी की।
परमाणु हाइड्रोजन की बामर श्रृंखला की लाल एच-अल्फा वर्णक्रमीय पंक्ति, जो आवरण (शैल) n=3 से आवरण n=2 तक का परिवर्तन है, ब्रह्मांड के विशिष्ट रंगों में से एक है। यह प्रसार या आयनीकरण आकाशगंगा के विस्तार में एक उज्ज्वल लाल रेखा का योगदान देता है, सामान्यतः एच II क्षेत्र होते हैं जो नक्षत्र बनाने वाले क्षेत्रों में पाए जाते हैं। वास्तविक रंग के चित्रों में, आकाशगंगा में लाल-गुलाबी रंग दिखाई देता है, जो हाइड्रोजन द्वारा उत्सर्जित दृश्यमान बामर पंक्तियों के संयोजन से होता है।
बाद में, यह पता चला कि जब हाइड्रोजन वर्णक्रम की बामर श्रृंखला पंक्तियों की जांच बहुत उच्च वियोजन पर की गई, तो वे बारीकी से दोहराए गए थे। । इस विभाजन को सूक्ष्म संरचना कहते हैं। यह भी पाया गया कि 6 से अधिक n वाले गोले से उद्दीप्त इलेक्ट्रॉन n = 2 आवरण में कूद सकते हैं, ऐसा करते समय पराबैंगनी रंगों का उत्सर्जन होता हैं।
बामर का सूत्र
बामर ने देखा कि एक एकल तरंग दैर्ध्य का हाइड्रोजन वर्णक्रम में प्रत्येक पंक्ति से संबंध था जो दृश्य प्रकाश क्षेत्र में था। वह तरंग दैर्ध्य 364.50682 एनएम था | जब 2 से बड़े किसी भी पूर्णांक का वर्ग किया गया और फिर उसी से घटाकर 4 घटाया गया, तो उस संख्या को 364.50682 एनएम से गुणा किया गया (नीचे समीकरण देखें) ने हाइड्रोजन वर्णक्रम में एक और पंक्ति की तरंग दैर्ध्य दी। इस सूत्र द्वारा, वह यह दिखाने में सक्षम था कि स्पेक्ट्रोस्कोपी द्वारा उसके समय में बनाई गई पंक्तियों के कुछ माप थोड़े गलत थे और उनके सूत्र ने उन पंक्तियों की भविष्यवाणी की जो बाद में मिलीं , हालांकि अभी तक देखी नहीं गई। उनकी संख्या भी श्रृंखला की सीमा प्रमाणित हुई। बामर समीकरण का उपयोग समावेश/प्रसार पंक्तियों की तरंग दैर्ध्य को खोजने के लिए किया जा सकता है और मूल रूप से इस प्रकार प्रस्तुत किया गया था (बामर के नियतांक को बी (B) के रूप में देने के लिए अंकन परिवर्तन के लिए सहेजें):
- λ तरंग दैर्ध्य है।
- B के मान के साथ एक नियतांक है 3.6450682×10−7 m या 364.50682 nm.
- एम 2 के बराबर है
- n एक पूर्णांक है जैसे कि n > m।
1888 में भौतिकशास्त्री जोहान्स रिडबर्ग ने हाइड्रोजन के सभी संक्रमणों के लिए बामर समीकरण का व्यापकीकरण किया। बामर श्रृंखला की गणना करने के लिए साधारणतः उपयोग की जाने वाली समीकरण रिडबर्ग सूत्र का एक विशिष्ट उदाहरण है और उपरोक्त सूत्र के एक सरल व्युत्क्रम गणितीय पुनर्व्यवस्था के रूप में अनुसरण करता है (पारंपरिक रूप से एकल पूर्णांकीय नियतांक के रुप में n के लिए m के संकेतन का उपयोग करके);
खगोल विज्ञान में भूमिका
बामर श्रृंखला खगोल विज्ञान में विशेष रूप से उपयोगी है क्योंकि ब्रह्मांड में हाइड्रोजन की प्रचुरता के कारण बामर पंक्तियां कई नक्षत्रीय वस्तुओं में दिखाई देती हैं,और इसलिए अन्य तत्वों की रेखाओं की तुलना साधारणतः देखी जाती हैं और य़े अपेक्षाकृत मजबूत होती हैं।
तारों का वर्णक्रमीय वर्गीकरण, जो मुख्य रूप से सतह के तापमान का निर्धारण है, वर्णक्रमीय पंक्तियों की सापेक्ष शक्ति पर आधारित है, और बामर श्रृंखला विशेष रूप से बहुत महत्वपूर्ण है।किसी तारे की अन्य विशेषताओं को उसके वर्णक्रमीय के गहन विश्लेषण द्वारा निर्धारित किया जा सकता है जिसमें सतह का गुरुत्वाकर्षण (भौतिक आकार से संबंधित) और संरचना सम्मिलित है।
क्योंकि बामर रेखाएँ सामान्यतः विभिन्न वस्तुओं के वर्णक्रम में देखी जाती हैं, वे प्रायः बामर पंक्तियों के डॉपलर स्थानांतरण के कारण त्रिज्य संवेग निर्धारित करने के लिए उपयोग की जाती हैं। बाइनरी नक्षत्र, एक्सोप्लेनेट, ठोस वस्तुओं जैसे न्यूट्रॉन नक्षत्र और ब्लैक होल (उनके चारों ओर अभिवृद्धि चक्र में हाइड्रोजन की गति से) का पता लगाने से लेकर, समान गति वाली वस्तुओं के समूहों की पहचान करने और संभवतः मूल (गतिमान समूह, नक्षत्र समूह, आकाशगंगा समूह, और टक्करों से अवशेष ), तक पूरे खगोल विज्ञान में इसका महत्वपूर्ण उपयोग है। ,आकाशगंगाओं या क्वेज़ार की दूरी (वास्तव में रेडशिफ्ट ) का निर्धारण, और उनके वर्णक्रम के विश्लेषण द्वारा अपरिचित वस्तुओं की पहचान करना।
बामर पंक्तियां किसी वर्णक्रम में समावेश या प्रसार पंक्तियों के रूप में दिखाई दे सकती हैं, जो कि देखी गई वस्तु के स्वरूप पर निर्भर करती है। नक्षत्रो में, बामर पंक्तियां प्रायः समावेश में देखी जाती हैं, और वे लगभग 10,000 केल्विन (वर्णक्रमीय प्रकार ए) के सतह के तापमान वाले नक्षत्र में सबसे मजबूत होती हैं। अधिकांश कुंडली अस्थायी आकाशगंगाओं के वर्णक्रम में, क्रियाशील आकाश गंगा का नाभिक, एच II क्षेत्र और ग्रह नीहारिका , बामर पंक्तियां उत्सर्जन पंक्तियां हैं।
नक्षत्रीय वर्णक्रम में, एच-एप्सिलॉन पंक्ति (परिवर्तन 7→2, 397.007 एनएम) को प्रायः आयनित कैल्शियम के कारण होने वाली एक अन्य समावेशित पंक्ति के साथ मिलाया जाता है जिसे "एच" (जोसेफ वॉन फ्रौनहोफर द्वारा दी गई फ्राउनहोफर लाइन्स) के रूप में जाना जाता है। एच-एप्सिलॉन को सीए II एच से 396.847 एनएम पर 0.16 एनएम से अलग किया जाता है, और कम-वियोजन वर्णक्रम में हल नहीं किया जा सकता है। H-zeta पंक्ति (परिवर्तन 8→2) समान रूप से तप्त नक्षत्र में देखी जाने वाली निष्प्रभावी हीलियम पंक्ति के साथ मिलाया जाता है।
यह भी देखें
- खगोलीय स्पेक्ट्रोस्कोपी
- बोह्र मॉडल
- हाइड्रोजन वर्णक्रमीय श्रृंखला
- लाइमैन श्रृंखला
- रिडबर्ग सूत्र
- तारकीय वर्गीकरण
- श्रोडिंगर समीकरण के लिए सैद्धांतिक और प्रायोगिक औचित्य
टिप्पणियाँ
- ↑ Nave, C. R. (2006). "Hydrogen Spectrum". HyperPhysics. Georgia State University. Retrieved March 1, 2008.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2019). NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd [2020, April 11]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
- ↑ "CODATA Recommended Values of the Fundamental Physical Constants: 2006" (PDF). Committee on Data for Science and Technology (CODATA). NIST.
[Category:Hydrogen physi