फलनात्मक वियोजन

From Vigyanwiki

गणित में, फलनात्मक वियोजन एक कार्यात्मक संबंध को उसके घटक भागों में इस तरह से समाधान करने की प्रक्रिया है कि मूल प्रकार्य को प्रकार्य संरचना द्वारा उन भागों से पुनर्निर्मित (अथार्त, पुन: संयोजित) किया जा सकता है।

वियोजन की यह प्रक्रिया घटक के संघटकों की पहचान में अंतर्दृष्टि प्राप्त करने के लिए की जा सकती है जो ब्याज की व्यक्तिगत भौतिक प्रक्रियाओं को दर्शा सकती है। साथ ही फलनात्मक वियोजन के परिणामस्वरूप वैश्विक कार्य का एक संकुचित प्रतिनिधित्व हो सकता है, एक ऐसा कार्य जो तभी संभव है जब घटक प्रक्रियाओं में एक निश्चित स्तर की प्रतिरूपता (यानी, स्वतंत्रता या परस्पर क्रियाहीन) हो।

Interactions[clarify] घटकों के बीच सहभागिता संग्रह के कार्य के लिए विवेचनात्मक हैं। सम्भवतः सभी पारस्परिक क्रियाएं observable[clarify], अवलोकनीय न हों, लेकिन संभवतः दोहरावपूर्ण धारणा, संश्लेषण, पुष्टीकरण और समग्र व्यवहार के प्रमाणन के माध्यम से अनुमान लगाया जा सकता है। perception[clarify]

मूल गणितीय परिभाषा

File:Chow-liu.png
कम कनेक्टेड डिपेंडेंसी स्ट्रक्चर का एक उदाहरण। कारण प्रवाह की दिशा ऊपर की ओर होती है।

एक बहुभिन्नरूपी कार्यात्मक के लिए , फलनात्मक वियोजन सामान्यतः कार्यों के एक समुच्चय  की पहचान करने की प्रक्रिया को संदर्भित करता है जो इस प्रकार कि

जहाँ कोई अन्य कार्य है।[clarification needed] इस प्रकार, हम कह सकते हैं कि कार्य कार्यों में विघटित हो जाता है। यह प्रक्रिया आंतरिक रूप से पदानुक्रमित है (और प्रायः ऐसा करते हैं) इस अर्थ में कि हम कार्यों घटक को घटक कार्यों के संग्रह में और विघटित करना चाहते हैं ऐसा है कि

जहां कोई अन्य कार्य है। इस तरह के वियोजन कई कारणों से रोचक और महत्वपूर्ण हैं। सामान्यतः, फलनात्मक वियोजन सार्थक होते हैं जब निर्भरता संरचना में एक निश्चित "विरलता" होती है; यही कि, जब घटक कार्य चर के लगभग असंबद्ध समुच्चय पर निर्भर पाए जाते हैं। इस प्रकार, उदाहरण के लिए, यदि हम वियोजन कार्यों की एक पदानुक्रमित संरचना में प्राप्त कर सकते हैं ऐसा कि , , , जैसा कि दाईं ओर दिए गए चित्र में दिखाया गया है, यह संभवतः एक अत्यधिक मूल्यवान वियोजन माना जाएगा।

उदाहरण: अंकगणित

फलनात्मक वियोजन का एक मूल उदाहरण जोड़, घटाव, गुणा और भाग के चार बाइनरी अंकगणितीय संचालन को जोड़ के दो बाइनरी संचालन और गुणन के संदर्भ में व्यक्त कर रहा है और योगात्मक व्युत्क्रमण के दो एकात्मक संचालन और गुणक व्युत्क्रमण घटाव को जोड़ और योगात्मक व्युत्क्रम की संरचना के रूप में संपादित किया जा सकता है और विभाजन को गुणन और गुणक व्युत्क्रम की संरचना के रूप में संपादित किया जा सकता है। यह घटाव और वियोजन के विश्लेषण को सरल करता है, और एक क्षेत्र की धारणा में इन कार्यों को स्वयंसिद्ध करने में भी आसान बनाता है , क्योंकि चार बाइनरी संचालन के स्थान पर केवल दो बाइनरी और दो एकात्मक संचालन होते हैं।

इन आदिम संक्रियाओं का विस्तार करते हुए, बहुपद अपघटन के विषय पर एक समृद्ध साहित्य है।

उदाहरण: निरंतर कार्यों का अपघटन


अपघटन के लिए प्रेरणा

वियोजन क्यों मूल्यवान है, इसके दो कारण हैं । सर्वप्रथम, गैर-फलनात्मक घटकों में एक कार्य का वियोजन सामान्यतः कार्यों के अधिक आर्थिकिता प्रतिनिधित्व की अनुमति देता है। उदाहरण के लिए, चतुष्कोणीय (यानी, 4-आर्य) चर के एक समुच्चय पर, पूर्ण कार्य का प्रतिनिधित्व करते हुए भंडारण मान की आवश्यकता है , कार्टेशियन उत्पाद ,में प्रत्येक तत्व के लिए कार्य का मान अथार्त , 1024 प्रत्येक के लिए . संभावित संयोजनों में से हैं। हालांकि, ऊपर दिया गया वियोजन में संभव है, तो को संग्रहित करने के लिए 4 मानों की आवश्यकता है, भंडारण को मान की आवश्यकता है, और को पुनः केवल 4 मानों को संग्रहित करने की आवश्यकता है। तो वियोजन के आधार पर, हमें 1024 मानों के स्थान पर केवल भण्डार की आवश्यकता है, जो एक नाटकीय बचत हैं।

File:West-side-highway traffic.png
वेस्ट साइड हाईवे ट्रैफिक पर आकस्मिक प्रभाव। मौसम और GW ब्रिज ट्रैफिक स्क्रीन अन्य प्रभावों को बंद कर देता है

सहज रूप से, प्रतिनिधित्व आकार में यह घटाव केवल इसलिए प्राप्त की जाती है क्योंकि प्रत्येक चर केवल अन्य चर के उपसमुच्चय पर निर्भर करता है। इस प्रकार, चर के पूरे समुच्चय पर निर्भर होने के बजाय, चर चर चर पर सीधे निर्भर करता है। हम कहेंगे कि चर चर को शेष विश्व के पर्दों में प्रदर्शित होने से दूर रखता है। इस घटना के व्यावहारिक उदाहरण हमारे चारों ओर हैं, जैसा कि नीचे "दार्शनिक विचार" में चर्चा की गई है, लेकिन आइए हम पश्चिम की ओर राजमार्ग पर उत्तर की ओर यातायात" के विशेष मामले पर विचार करें। आइए हम इस चर () मान लें  {"धीमी गति से चलना", "अत्यंत धीमी गति से चलना", "बिल्कुल नहीं चलना"} के तीन संभावित मान लेता है। अब कहते हैं चर दो अन्य चरों पर निर्भर करता है, "मौसम" के साथ  {"सूर्य", "बारिश", "बर्फ"} के मानों को, और {"10mph", "5mph", "1mph"} मानों के साथ " जी डबल्यू ब्रिज ट्रैफिक"। यहाँ मुद्दा यह है कि निश्चित रूप से कई माध्यमिक चर हैं जो मौसम चर को प्रभावित करते हैं (जैसे, कनाडा पर कम दबाव प्रणाली, जापान में तितली प्रभाव आदि) और ब्रिज ट्रैफ़िक चर (जैसे, न्यूयॉर्क में अंतरराज्यीय I-95 पर दुर्घटना), प्रेसिडेंशियल मोटरसाइकिल आदि) ये सभी अन्य माध्यमिक चर वेस्ट साइड हाईवे ट्रैफिक के लिए सीधे प्रासंगिक नहीं हैं। वेस्ट साइड हाईवे ट्रैफिक की भविष्यवाणी करने के लिए हमें (काल्पनिक रूप से) मौसम और जीडब्ल्यू ब्रिज ट्रैफिक की आवश्यकता है, क्योंकि ये दो चर वेस्ट साइड हाईवे ट्रैफिक को अन्य सभी संभावित प्रभावों से दूर रखती हैं। अर्थात्, अन्य सभी प्रभाव उनके माध्यम से कार्य करते हैं।

शुद्ध रूप से गणितीय विचारों के बाहर, शायद फलनात्मक वियोजन का सबसे बड़ा मूल्य वह अंतर्दृष्टि है जो यह दुनिया की संरचना में प्रदान करता है। जब एक फलनात्मक वियोजन प्राप्त किया जा सकता है, तो यह ऑन्कोलॉजिकल (सत्त्व विद्या संबंधी)  जानकारी प्रदान करता है कि दुनिया में वास्तव में कौन सी संरचनाएं विद्यमान हैं, और उनकी भविष्यवाणी और जुगाड़ कैसे किया जा सकता है। उदाहरण के लिए, ऊपर दिए गए उदाहरण में, यदि यह पता चलता है कि प्रत्यक्ष रूप से निर्भर करता है, इसका अर्थ है कि , की भविष्यवाणी के प्रयोजनों के लिए केवल . को जानना ही पर्याप्त है। इसके अलावा को प्रभावित करने के लिए ,हस्तक्षेप पर सीधे लिया जा सकता है, और चरों ,पर हस्तक्षेप करके कुछ भी अतिरिक्त प्राप्त नहीं किया जा सकता है, चूंकि ये किसी भी स्थिति में केवल द्वारा कार्य करते हैं।

दार्शनिक विचार

फलनात्मक वियोजन के दार्शनिक पूर्ववृत्त और शाखाएँ अत्यंत व्यापक हैं, क्योंकि फलनात्मक वियोजन एक तरह से या किसी अन्य आधुनिक विज्ञान के अंतर्गत आता है। यहाँ हम इनमें से कुछ दार्शनिक विचारों की समीक्षा करते हैं।

न्यूनतावादी परंपरा

पूर्वी दर्शन और पश्चिमी दर्शन के बीच प्रायः जो प्रमुख भेद किए जाते हैं उनमें से एक यह है कि पूर्वी दार्शनिक समग्रवाद के पक्ष में विचारों का समर्थन करते थे , जबकि पश्चिमी विचारक न्यूनतावाद के पक्ष में विचारों का समर्थन करते थे । पूर्व और पश्चिम के बीच यह अंतर अन्य दार्शनिक भेदों (जैसे कि दार्शनिक यथार्थवाद बनाम यथार्थवाद विरोधी) के समान है। पूर्वी समग्र भावना के कुछ उदाहरण:

  • "अपना मुंह खोलो, अपनी गतिविधियों को बढ़ाओ, चीजों के बीच अंतर करना शुरू करो, और तुम आशा के बिना निरंतर मेहनत करोगे।" लाओ त्ज़ु के ताओ ते चिंग (ब्रायन ब्राउन वॉकर, अनुवादक)
  • "[लोगों] के लिए इस तथ्य का अर्थ देखना कठिन काम है कि सब कुछ, स्वयं भी, हर चीज पर निर्भर करता है और इसका कोई स्थायी अस्तित्व नहीं है।"मज्जिमा निकाय (ऐनी बैंक्रॉफ्ट, अनुवादक)
  • एक नाम उस चीज़ पर लगाया जाता है जिसे एक चीज़ या एक स्तर माना जाता है और यह इसे अन्य चीजों और अन्य स्तरों से भिन्न करता है। लेकिन जब आप नाम के पीछे झूठ का पीछा करते हैं, तो आप एक बड़ी और विशाल सूक्ष्मता पाते हैं जिसमें कोई विभाजन नहीं होता है।"... विशुद्धि मग्गा (ऐनी बैंक्रॉफ्ट, अनुवादक)

पश्चिमी परंपरा, ग्रीक दार्शनिकों के बीच अपने मूल से , एक ऐसी स्थिति को पसंद करती थी जिसमें सही भेद, विभाजन और विरोधाभासों को चित्रित करना अंतर्दृष्टि का शिखर माना जाता था। अरिस्टोटेलियनवाद/ पोर्फिरियन (दार्शनिक) विश्वदृष्टि में , (सख्त प्रमाण के माध्यम से)भेद करने में सक्षम होने के लिए किसी चीज के गुण उसके सार बनाम संपत्ति (दर्शन) बनाम दुर्घटना (दर्शन) बनाम आकस्मिक परिभाषा का प्रतिनिधित्व करते हैं ,और इस औपचारिक विवरण के आधार पर उस इकाई को उसके उचित स्थान पर अलग करने के लिए प्रकृति के वर्गीकरण में रखा गया है- यह ज्ञान की चरम ऊंचाई को प्राप्त करने के लिए था।

पदानुक्रम और प्रतिरूपकता के लक्षण

प्राकृतिक या कृत्रिम प्रणालियों में जिन्हें किसी तरह से घटकों को एकीकृत करने की आवश्यकता होती है, लेकिन जहां घटकों की संख्या अधिक हो जाती है, वह यथोचित रूप से संपूर्ण परस्पर जुड़ी हो सकती है (संयोजन की संख्या में वर्गवार वृद्धि के कारण (= n दो से अधिक या = n * (n - 1) / 2)), सामान्यतः पाया जाता है कि समाधान में कुछ हद तक पदानुक्रम को नियोजित किया जाना चाहिए। सघन रूप से जुड़ी प्रणालियों पर विरल पदानुक्रमित प्रणालियों के सामान्य लाभ- और इन लाभों के मात्रात्मक अनुमान- रेसनिकॉफ (1989) द्वारा प्रस्तुत किए गए हैं। नीरस शब्दों में, एक पदानुक्रम "तत्वों का एक संग्रह है जो वैध रूप से जटिल समग्रता में संयोजित होता है जो उनके गुणों के लिए उनके घटक भागों पर निर्भर करता है," और जिसमें नवीनता "मौलिक रूप से दहनशील, पुनरावृत्त और पारदर्शी" है। (एमसी जिन्न 1994).

एक महत्वपूर्ण धारणा जो सदा पदानुक्रम के संबंध में उत्पन्न होती है वह प्रतिरूपकता है, जो पदानुक्रमित टोपोलॉजी में संयोजन की विरलता से प्रभावी रूप से निहित है। भौतिक प्रणालियों में, एक मॉड्यूल सामान्यतः परस्पर क्रिया करने वाले घटकों का एक समुच्चय होता है जो बाहरी दुनिया से बहुत सीमित अंतरपृष्ठ के माध्यम से संबंधित होता है, इस प्रकार इसकी आंतरिक संरचना के अधिकांश पहलुओं को छुपाता है। नतीजतन, एक मॉड्यूल के आंतरिक भाग में किए गए संशोधन (उदाहरण के लिए दक्षता में सुधार करने के लिए) आवश्यक नहीं कि बाकी सिस्टम (फोडर 1983) के माध्यम से एक लहर प्रभाव पैदा करें। यह विशेषता मॉड्यूलरिटी के प्रभावी उपयोग को सभी अच्छे सॉफ़्टवेयर और हार्डवेयर इंजीनियरिंग का केंद्रबिंदु बनाती है।

पदानुक्रम और प्रतिरूपकता की अनिवार्यता

प्रकृति में पदानुक्रम/मॉड्यूलरिटी की व्यापकता और आवश्यकता के संबंध में कई सम्मोहक तर्क हैं (कोस्टलर 1973). साइमन (1996) बताते हैं कि विकसित प्रणालियों के बीच, केवल वे जो स्थिर उपसमुच्चयों (मॉड्यूल) को प्राप्त करने और फिर पुन: उपयोग करने का प्रबंधन कर सकते हैं, वे यथोचित त्वरित गति से फिटनेस परिदृश्य के माध्यम से खोज करने में सक्षम होने की संभावना रखते हैं; इस प्रकार, साइमन का कहना है कि "संभावित जटिल रूपों में, पदानुक्रम वे हैं जिनके पास विकसित होने का समय है।" इस विचारधारा ने और भी मजबूत दावे को जन्म दिया है कि यद्यपि "हम नहीं जानते कि ब्रह्मांड में अन्य ग्रहों पर जीवन के कौन से रूप विकसित हुए हैं, ... (कोस्टलर 1967). यह एक सौभाग्यशाली स्थिति होगी क्योंकि सरल और पृथक उप-प्रणालियों के अस्तित्व को सफल विज्ञान (फोडर 1983) के लिए एक पूर्व शर्त माना जाता है। किसी भी मामले में, अनुभव निश्चित रूप से इंगित करता है कि अधिकांश दुनिया में पदानुक्रमित संरचना है।

साइमन के शब्दों में, यह प्रस्तावित किया गया है कि धारणा स्वयं पदानुक्रमित अपघटन (लेटन 1992), की एक प्रक्रिया है, और वह घटनाएं जो प्रकृति में अनिवार्य रूप से पदानुक्रमित नहीं हैं, मानव मन के लिए "सैद्धांतिक रूप से समझदार" भी नहीं हो सकती हैं। (मैकगिन 1994,साइमन 1996).

तथ्य यह है कि कई जटिल प्रणालियों में लगभग विघटित, पदानुक्रमित संरचना एक प्रमुख सुविधा कारक है जो हमें ऐसी प्रणालियों और उनके भागों को समझने, वर्णन करने और यहां तक कि "देखने" में सक्षम बनाती है। या संभवतः प्रस्ताव को दूसरी तरफ रखा जाना चाहिए। यदि दुनिया में ऐसी महत्वपूर्ण प्रणालियाँ हैं जो पदानुक्रम के बिना जटिल हैं, तो वे काफी हद तक हमारे अवलोकन और समझ से बच सकती हैं। उनके व्यवहार के विश्लेषण में उनके प्राथमिक भागों की परस्पर क्रियाओं का इतना विस्तृत ज्ञान और गणना सम्मिलित होगी कि यह हमारी स्मृति या संगणना की क्षमताओं से परे होगा।


अनुप्रयोग

कार्यात्मक अपघटन के व्यावहारिक अनुप्रयोग बायेसियन नेटवर्क, संरचनात्मक समीकरण मॉडलिंग, रैखिक सिस्टम और डेटाबेस सिस्टम में पाए जाते हैं।

ज्ञान प्रतिनिधित्व

कार्यात्मक अपघटन से संबंधित प्रक्रियाएं ज्ञान प्रतिनिधित्व और मशीन सीखने के क्षेत्र में प्रचलित हैं। तर्क सर्किट न्यूनीकरण, निर्णय पेड़, व्याकरणिक अनुमान, पदानुक्रमित क्लस्टरिंग, और क्वाडट्री अपघटन जैसी पदानुक्रमित मॉडल प्रेरण तकनीकें फ़ंक्शन अपघटन के सभी उदाहरण हैं। अन्य अनुप्रयोगों और फ़ंक्शन अपघटन की समीक्षा में पाया जा सकता है Zupan et al. (1997), जो सूचना सिद्धांत और ग्राफ सिद्धांत पर आधारित विधियों को भी प्रस्तुत करता है।

शोर की उपस्थिति में एक फ़ंक्शन अपघटन प्रक्रिया को लागू करने के रूप में कई सांख्यिकीय अनुमान विधियों के बारे में सोचा जा सकता है; अर्थात्, जहाँ कार्यात्मक निर्भरताएँ केवल लगभग धारण करने की अपेक्षा की जाती हैं। ऐसे मॉडलों में मिश्रण मॉडल और हाल ही में लोकप्रिय तरीके हैं जिन्हें कारण अपघटन या बायेसियन नेटवर्क कहा जाता है।

डेटाबेस सिद्धांत

डेटाबेस सामान्यीकरण देखें।

मशीन लर्निंग

व्यावहारिक वैज्ञानिक अनुप्रयोगों में, अध्ययन के तहत प्रणालियों की अविश्वसनीय जटिलता के कारण पूर्ण कार्यात्मक अपघटन प्राप्त करना लगभग संभव नहीं है। यह जटिलता शोर की उपस्थिति में प्रकट होती है, जो हमारी टिप्पणियों पर सभी अवांछित और अप्राप्य प्रभावों के लिए सिर्फ एक पदनाम है।

हालांकि, जबकि सही कार्यात्मक अपघटन आमतौर पर असंभव है, आत्मा बड़ी संख्या में सांख्यिकीय विधियों में रहती है जो शोर प्रणालियों से निपटने के लिए सुसज्जित हैं। जब एक प्राकृतिक या कृत्रिम प्रणाली आंतरिक रूप से पदानुक्रमित होती है, तो सिस्टम चर पर संयुक्त वितरण को इस पदानुक्रमित संरचना का प्रमाण देना चाहिए। सिस्टम को समझने की कोशिश करने वाले पर्यवेक्षक का कार्य तब इन चरों के प्रेक्षणों से श्रेणीबद्ध संरचना का अनुमान लगाना है। यह एक संयुक्त वितरण के पदानुक्रमित अपघटन के पीछे की धारणा है, आंतरिक पदानुक्रमित संरचना में से कुछ को पुनर्प्राप्त करने का प्रयास जो उस संयुक्त वितरण को उत्पन्न करता है।

एक उदाहरण के रूप में, बायेसियन नेटवर्क विधियाँ इसके कारण दोष रेखाओं के साथ एक संयुक्त वितरण को विघटित करने का प्रयास करती हैं, इस प्रकार प्रकृति को इसके सीम में काटती हैं। इन विधियों के पीछे आवश्यक प्रेरणा यह है कि अधिकांश प्रणालियों (प्राकृतिक या कृत्रिम) के भीतर, अपेक्षाकृत कुछ घटक/घटनाएँ एक दूसरे के साथ सीधे समान स्तर पर परस्पर क्रिया करती हैं। (Simon 1963). इसके बजाय, कोई घटकों के छोटे उपसमुच्चयों के बीच सघन कनेक्शन (प्रत्यक्ष संपर्क) की जेबों को देखता है, लेकिन इन सघन रूप से जुड़े उपसमुच्चयों के बीच केवल ढीले संबंध हैं। इस प्रकार भौतिक प्रणालियों में कारणात्मक निकटता की धारणा है जिसके अंतर्गत चर स्वाभाविक रूप से छोटे समूहों में अवक्षेपित हो जाते हैं। इन समूहों की पहचान करना और संयुक्त का प्रतिनिधित्व करने के लिए उनका उपयोग भंडारण की महान दक्षता (पूर्ण संयुक्त वितरण के सापेक्ष) के साथ-साथ शक्तिशाली निष्कर्ष एल्गोरिदम के लिए आधार प्रदान करता है।

सॉफ्टवेयर आर्किटेक्चर

Template:Weasel section कार्यात्मक अपघटन एक डिजाइन विधि है जो एक कंप्यूटर प्रोग्राम के गैर-कार्यान्वयन, वास्तुशिल्प विवरण का उत्पादन करने का इरादा रखती है। वस्तुओं का अनुमान लगाने और उनमें विधियों को जोड़ने (ऑब्जेक्ट ओरिएंटेड प्रोग्रामिंग) के बजाय, प्रत्येक ऑब्जेक्ट प्रोग्राम की कुछ सेवा पर कब्जा करने का इरादा रखता है, सॉफ्टवेयर आर्किटेक्ट पहले कार्यों और प्रकारों की एक श्रृंखला स्थापित करता है जो कंप्यूटर प्रोग्राम की मुख्य प्रसंस्करण समस्या को पूरा करता है। सामान्य कार्यों और प्रकारों को प्रकट करने के लिए प्रत्येक को विघटित करता है, और अंत में इस गतिविधि से मॉड्यूल प्राप्त करता है।

उदाहरण के लिए, संपादक Emacs के डिजाइन को प्रारंभ में कार्यों के संदर्भ में सोचा जा सकता है:


और 'एफ का एक संभावित कार्य अपघटन:

यह एक दुभाषिया के प्रशंसनीय मॉड्यूल, सेवा या वस्तु की ओर ले जाता है (Expr से फ़ंक्शन युक्त)। फ़ंक्शन अपघटन यकीनन पुन: प्रयोज्यता के बारे में अंतर्दृष्टि प्रदान करता है, जैसे कि यदि विश्लेषण के दौरान, दो कार्य एक ही प्रकार का उत्पादन करते हैं, तो यह संभावना है कि दोनों में एक सामान्य कार्य / क्रॉस-कटिंग चिंता रहती है। इसके विपरीत, ऑब्जेक्ट-ओरिएंटेड प्रोग्रामिंग में, इस तरह के अपघटन पर विचार करने से पहले मॉड्यूल का अनुमान लगाना एक आम बात है। यकीनन इसका परिणाम बाद में महंगा पुनर्रचना होता है। एफडी उस जोखिम को कुछ हद तक कम करता है। इसके अलावा, यकीनन, जो एफडी को अन्य डिजाइन विधियों से अलग करता है- वह यह है कि यह आर्किटेक्चरल डिस्कशन का एक संक्षिप्त उच्च-स्तरीय माध्यम प्रदान करता है जो एंड-टू-एंड है, अपस्ट्रीम आवश्यकताओं में खामियों को प्रकट करता है और अग्रिम रूप से अधिक डिजाइन निर्णयों को लाभप्रद रूप से उजागर करता है। और अंत में, एफडी को विकास को प्राथमिकता देने के लिए जाना जाता है। यकीनन, यदि एफडी सही है, तो कार्यक्रम के सबसे पुन: प्रयोज्य और लागत-निर्धारित भागों की पहचान विकास चक्र में बहुत पहले की जाती है।

संकेत आगे बढ़ाना

कई सिग्नल प्रोसेसिंग सिस्टम के विश्लेषण में कार्यात्मक अपघटन का उपयोग किया जाता है, जैसे एलटीआई प्रणाली सिद्धांत एलटीआई सिस्टम के इनपुट सिग्नल को एक फंक्शन के रूप में व्यक्त किया जा सकता है, . तब घटक संकेतों नामक अन्य कार्यों के एक रैखिक संयोजन में विघटित किया जा सकता है:

यहाँ, घटक संकेत हैं। ध्यान दें कि स्थिरांक हैं। यह अपघटन विश्लेषण में सहायता करता है, क्योंकि अब सिस्टम के आउटपुट को इनपुट के घटकों के संदर्भ में व्यक्त किया जा सकता है। अगर हम जाने दें सिस्टम के प्रभाव का प्रतिनिधित्व करते हैं, तो आउटपुट सिग्नल है , जिसे इस प्रकार व्यक्त किया जा सकता है:

दूसरे शब्दों में, सिस्टम को इनपुट सिग्नल के प्रत्येक घटक पर अलग से कार्य करते हुए देखा जा सकता है। इस प्रकार के अपघटन के सामान्य रूप से उपयोग किए जाने वाले उदाहरण फूरियर श्रृंखला और फूरियर रूपांतरण हैं।

प्रणाली अभियांत्रिकी

सिस्टम अभियांत्रिकी में कार्यात्मक अपघटन एक प्रणाली को कार्यात्मक शर्तों में परिभाषित करने की प्रक्रिया को संदर्भित करता है, तत्पश्चात निम्न-स्तरीय कार्यों को उच्च स्तरीय सिस्टम कार्यों से अनुक्रमण संबंधों को परिभाषित करता है।[1] मूल विचार यह है कि किसी सिस्टम को इस तरह विभाजित करने का प्रयास किया जाए कि ब्लॉक आरेख के प्रत्येक ब्लॉक को विवरण में "और" या "या" के बिना वर्णित किया जा सके।

यह अभ्यास प्रणाली के प्रत्येक भाग को शुद्ध कार्य करने के लिए बाध्य करता है। जब किसी सिस्टम को शुद्ध कार्यों के रूप में डिज़ाइन किया जाता है, तो उनका पुन: उपयोग या प्रतिस्थापन किया जा सकता है। एक सामान्य पार्श्व प्रभाव यह है कि ब्लॉक के बीच अंतरापृष्ठ सरल और सामान्य हो जाते हैं। सामान्यतः अंतरापृष्ठ सरल हो जाते हैं, इसलिए शुद्ध फ़ंक्शन को संबंधित समान फ़ंक्शन के साथ बदलना आसान होता है।

उदाहरण के लिए, मान लें कि किसी को बूमबॉक्स सिस्टम बनाने की आवश्यकता है। ध्वनि-विस्तारक यंत्र, एम्पलीफायर, टेप डेक और फ्रंट पैनल में इसे कार्यात्मक रूप से विघटित किया जा सकता है। बाद में, जब एक अलग मॉडल को एक ऑडियो सीडी की आवश्यकता होती है, तो यह संभवतः उसी इंटरफेस को फिट कर सकता है।

यह भी देखें

टिप्पणियाँ

  1. Systems Engineering Fundamentals., Defense Acquisition University Press, Fort Belvoir, VA, January 2001, p45


संदर्भ

  • Fodor, Jerry (1983), The Modularity of Mind, Cambridge, Massachusetts: MIT Press
  • Koestler, Arthur (1967), The Ghost in the Machine, New York: Macmillan
  • Koestler, Athur (1973), "The tree and the candle", in Gray, William; Rizzo, Nicholas D. (eds.), Unity Through Diversity: A Festschrift for Ludwig von Bertalanffy, New York: Gordon and Breach, pp. 287–314
  • Leyton, Michael (1992), Symmetry, Causality, Mind, Cambridge, Massachusetts: MIT Press
  • Resnikoff, Howard L. (1989), The Illusion of Reality, New York: Springer
  • Simon, Herbert A. (1963), "Causal Ordering and Identifiability", in Ando, Albert; Fisher, Franklin M.; Simon, Herbert A. (eds.), Essays on the Structure of Social Science Models, Cambridge, Massachusetts: MIT Press, pp. 5–31.
  • Simon, Herbert A. (1973), "The organization of complex systems", in Pattee, Howard H. (ed.), Hierarchy Theory: The Challenge of Complex Systems, New York: George Braziller, pp. 3–27.
  • Simon, Herbert A. (1996), "The architecture of complexity: Hierarchic systems", The sciences of the artificial, Cambridge, Massachusetts: MIT Press, pp. 183–216.
  • Tonge, Fred M. (1969), "Hierarchical aspects of computer languages", in Whyte, Lancelot Law; Wilson, Albert G.; Wilson, Donna (eds.), Hierarchical Structures, New York: American Elsevier, pp. 233–251.
  • Zupan, Blaž; Bohanec, Marko; Bratko, Ivan; Demšar, Janez (1997), "Machine learning by function decomposition", Proc. 14th International Conference on Machine Learning, Morgan Kaufmann, pp. 421–429