वास्तविक प्रोजेक्टिव स्पेस
गणित में, वास्तविक प्रक्षेपी स्थान, निरूपित या मूल 0 में से होकर गुजरने वाली रेखाओं का सांस्थितिक स्थान है यह कॉम्पैक्ट जगह है, डायमेंशन का चिकना कई गुना n, और विशेष मामला है ग्रासमानियन अंतरिक्ष का।
मूल गुण
निर्माण
जैसा कि सभी प्रोजेक्टिव स्पेस के साथ होता है, RPn का भागफल स्थान (टोपोलॉजी) लेकर बनता है Rn+1 ∖ {0} तुल्यता संबंध के तहत x ∼ λx सभी वास्तविक संख्याओं के लिए λ ≠ 0. सभी एक्स के लिए Rn+1 ∖ {0} कोई हमेशा λ पा सकता है जैसे कि λx में नॉर्म (गणित) है 1। ठीक ऐसे दो λ हैं जो चिह्न से भिन्न हैं।
इस प्रकार 'आर.पी.'n को इकाई n-क्षेत्र, S के प्रतिव्यासांत बिंदुओं की पहचान करके भी बनाया जा सकता हैn, 'आर' मेंएन+1.
आगे S के ऊपरी गोलार्द्ध तक सीमित किया जा सकता हैn और केवल बाउंडिंग भूमध्य रेखा पर एंटीपोडल बिंदुओं की पहचान करें। इससे पता चलता है कि 'आरपी'n बंद n-डायमेंशनल डिस्क, D के समतुल्य भी हैn, सीमा पर एंटीपोडल बिंदुओं के साथ, ∂Dn = Sn−1, पहचान की।
कम आयामी उदाहरण
- आर.पी1 वास्तविक प्रक्षेपी रेखा कहलाती है, जो वृत्त के समतुल्य टोपोलॉजी है।
- आर.पी2 को वास्तविक प्रक्षेपी तल कहा जाता है। यह स्थान R में एम्बेडिंग नहीं किया जा सकता है3</उप>। हालांकि इसे आर में एम्बेड किया जा सकता है4 और R में विसर्जन (गणित) हो सकता है3 (लड़के की सतह देखें)। प्रोजेक्टिव एन-स्पेस के लिए एंबेडेबिलिटी और इमर्सिबिलिटी के सवालों का अच्छी तरह से अध्ययन किया गया है।[1]
- आर.पी3 SO(3) के लिए (भिन्नरूपी) है, इसलिए समूह संरचना को स्वीकार करता है; कवरिंग मैप एस3 → आरपी3 समूह स्पिन(3) → SO(3) का मानचित्र है, जहां स्पिन समूह|स्पिन(3) लाइ समूह है जो SO(3) का सार्वभौमिक आवरण है।
टोपोलॉजी
एन-स्फीयर पर एंटीपोडल मानचित्र (x से -x को भेजने वाला नक्शा) चक्रीय समूह बनाता है|'Z'2एस पर ग्रुप एक्शन (गणित)।एन. जैसा कि ऊपर बताया गया है, इस क्रिया के लिए कक्षा स्थान 'RP' हैएन. यह क्रिया वास्तव में अंतरिक्ष को कवर करना क्रिया है जो एस देती हैn 'RP' के दोहरे आवरण (टोपोलॉजी) के रूप मेंएन. चूंकि एसn केवल n ≥ 2 के लिए जुड़ा हुआ है, यह इन मामलों में सार्वभौमिक आवरण के रूप में भी कार्य करता है। यह इस प्रकार है कि 'आरपी' का मौलिक समूहn 'Z' है2 जब n > 1. (जब n = 1 मूल समूह S के साथ होमोमोर्फिज्म के कारण 'Z' होता है1</सुप>). मौलिक समूह के लिए जनरेटर एस में एंटीपोडल बिंदुओं को जोड़ने वाले किसी भी वक्र को प्रक्षेपित करके प्राप्त बंद वक्र हैn नीचे 'RP' तकएन.
प्रोजेक्टिव एन-स्पेस कॉम्पैक्ट, जुड़ा हुआ है, और ऑर्डर 2 के चक्रीय समूह के लिए मौलिक समूह आइसोमॉर्फिक है: इसका सार्वभौमिक कवरिंग स्पेस एन-स्फीयर से एंटीपोडी क्वांटेंट मैप द्वारा दिया जाता है, जो साधारण कनेक्टेड स्पेस है। यह डबल कवरिंग ग्रुप है। 'आर' पर एंटीपोड मानचित्रp का चिह्न है , इसलिए यह अभिविन्यास-संरक्षण है यदि और केवल यदि p सम है। अभिविन्यास चरित्र इस प्रकार है: नॉन-ट्रिविअल लूप इन के समान एक्ट करें अभिविन्यास पर, इसलिए RPn ओरिएंटेबल है अगर और केवल अगर n + 1 सम है, अर्थात n विषम है।[2] प्रोजेक्टिव एन-स्पेस वास्तव में 'आर' के सबमनीफोल्ड के लिए भिन्न है(एन+1)2 जिसमें सभी सममित हैं (n + 1) × (n + 1) ट्रेस (रैखिक बीजगणित) 1 के मैट्रिसेस जो कि उदासीन रैखिक परिवर्तन भी हैं।[citation needed]
वास्तविक प्रक्षेप्य रिक्त स्थान की ज्यामिति
वास्तविक प्रक्षेप्य स्थान निरंतर सकारात्मक स्केलर वक्रता मीट्रिक को स्वीकार करता है, जो मानक गोल क्षेत्र (एंटीपोडल मानचित्र स्थानीय रूप से आइसोमेट्री) द्वारा डबल कवर से आ रहा है।
मानक गोल मीट्रिक के लिए, इसमें अनुभागीय वक्रता समान रूप से 1 है।
मानक गोल मीट्रिक में, प्रक्षेप्य स्थान का माप गोले के माप का ठीक आधा है।
चिकनी संरचना
वास्तविक प्रक्षेप्य स्थान चिकने कई गुना हैं। एस परn, समरूप निर्देशांकों में, (x1, ..., एक्सn+1), सबसेट यू पर विचार करेंiएक्स के साथi≠ 0. प्रत्येक यूi'आर' में दो खुली इकाई गेंदों के असंयुक्त संघ के लिए होमोमोर्फिक हैn वह मानचित्र 'RP' के समान उपसमुच्चय के लिएn और समन्वय संक्रमण कार्य सुचारू हैं। यह 'आरपी' देता हैn चिकनी संरचना।
=== सीडब्ल्यू कॉम्प्लेक्स === के रूप में संरचना रियल प्रोजेक्टिव स्पेस आरपीn प्रत्येक आयाम में 1 सेल वाले CW कॉम्प्लेक्स की संरचना को स्वीकार करता है।
सजातीय निर्देशांक में (x1 ... एक्सn+1) एस परn, निर्देशांक पड़ोस U1 = {(एक्स1 ... एक्सn+1) | एक्स1 ≠ 0} को n-डिस्क D के आंतरिक भाग से पहचाना जा सकता हैएन. जब एक्सi= 0, के पास 'RP' हैn−1. इसलिए 'RP' का n−1 कंकालn 'आरपी' हैn−1, और संलग्न मानचित्र f : Sn−1 → 'RP'n−1 2-टू-1 कवरिंग मैप है। कोई लगा सकता है
कोशिकाएँ शूबर्ट कोशिकाएँ हैं, जैसा कि झंडा कई गुना पर है। अर्थात्, पूर्ण ध्वज (रैखिक बीजगणित) लें (मानक ध्वज कहें) 0 = वी0 <वी1 <...< वीn; तब बंद k-सेल वे रेखाएँ होती हैं जो V में स्थित होती हैंk. इसके अलावा ओपन के-सेल (के-सेल का इंटीरियर) लाइन में है Vk \ Vk−1 (वी में लाइनेंkलेकिन वी नहींk−1).
सजातीय निर्देशांक (ध्वज के संबंध में) में, कोशिकाएं हैं
चिकनी संरचना के प्रकाश में, मोर्स समारोह का अस्तित्व आरपी दिखाएगाn सीडब्ल्यू कॉम्प्लेक्स है। ऐसा ही कार्य सजातीय निर्देशांक में दिया जाता है,
टॉटोलॉजिकल बंडल्स
रियल प्रोजेक्टिव स्पेस के ऊपर नेचुरल लाइन बंडल होता है, जिसे टॉटोलॉजिकल बंडल कहा जाता है। अधिक सटीक रूप से, इसे टॉटोलॉजिकल सबबंडल कहा जाता है, और दोहरी एन-डायमेंशनल बंडल भी होता है जिसे टॉटोलॉजिकल भागफल बंडल कहा जाता है।
वास्तविक प्रक्षेप्य स्थानों की बीजगणितीय टोपोलॉजी
होमोटॉपी समूह
आरपी के उच्च होमोटॉपी समूहn वास्तव में S के उच्च होमोटॉपी समूह हैंn, कंपन से जुड़े होमोटॉपी पर लंबे सटीक अनुक्रम के माध्यम से।
स्पष्ट रूप से, फाइबर बंडल है:
होमोटॉपी समूह हैं:
समरूपता
उपरोक्त सीडब्ल्यू संरचना से जुड़े सेलुलर चेन कॉम्प्लेक्स में प्रत्येक आयाम 0, ..., एन में 1 सेल है। प्रत्येक आयामी k के लिए, सीमा मानचित्र dk: डी.डीकश्मीर → 'आरपी'k−1/'RP'k−2 वह मानचित्र है जो भूमध्य रेखा को S पर गिराता हैk−1 और फिर प्रतिव्यासांत बिंदुओं की पहचान करता है। विषम (प्रतिक्रिया सम) आयामों में, इसकी डिग्री 0 (प्रतिक्रिया 2) है:
इस प्रकार अभिन्न सेलुलर समरूपता है
अनंत वास्तविक प्रक्षेप्य स्थान
अनंत वास्तविक प्रोजेक्टिव स्पेस को सीमित प्रोजेक्टिव स्पेस की प्रत्यक्ष सीमा या संघ के रूप में बनाया गया है:
इस स्थान का दोहरा आवरण अनंत गोला है , जो संविदात्मक है। अनंत प्रक्षेपी स्थान इसलिए ईलेनबर्ग-मैकलेन अंतरिक्ष K('Z') है।2, 1).
प्रत्येक गैर-ऋणात्मक पूर्णांक q के लिए, मॉड्यूल 2 समरूपता समूह .
इसका कोहोलॉजी रिंग मोडुलो (शब्दजाल) 2 है
कहाँ पहला स्टिफ़ेल-व्हिटनी वर्ग है: यह मुफ़्त है -बीजगणित है , जिसकी डिग्री 1 है।
यह भी देखें
- जटिल प्रोजेक्टिव स्पेस
- क्वाटरनियोनिक प्रोजेक्टिव स्पेस
- लेंस स्थान
- वास्तविक प्रक्षेपी विमान
टिप्पणियाँ
- ↑ See the table of Don Davis for a bibliography and list of results.
- ↑ J. T. Wloka; B. Rowley; B. Lawruk (1995). Boundary Value Problems for Elliptic Systems. Cambridge University Press. p. 197. ISBN 978-0-521-43011-1.
संदर्भ
- Bredon, Glen. Topology and geometry, Graduate Texts in Mathematics, Springer Verlag 1993, 1996
- Davis, Donald. "Table of immersions and embeddings of real projective spaces". Retrieved 22 Sep 2011.
- Hatcher, Allen (2001). Algebraic Topology. Cambridge University Press. ISBN 978-0-521-79160-1.