चार्ज पंप

From Vigyanwiki
डीसी वोल्टेज आपूर्ति और एक पंप नियंत्रण संकेत S0 के साथ दो-चरण चार्ज पंप
डायोड के साथ डिक्सन चार्ज पंप
MOSFETs के साथ डिक्सन चार्ज पंप
पीएलएल चार्ज पंप

चार्ज पंप एक प्रकार का डीसी-टू-डीसी परिवर्त्तक है जो वोल्टेज बढ़ाने या कम करने के लिए ऊर्जावान चार्ज भंडारण के लिए संधारित्र का उपयोग करता है। चार्ज-पंप परिपथ उच्च विद्युत दक्षता में सक्षम होते हैं, कभी-कभी 90-95% तक उच्च होते हैं, जबकि विद्युत रूप से सरल परिपथ होते हैं।

विवरण

चार्ज पंप संधारित्र के माध्यम से में आपूर्ति वोल्टेज के संपर्क को नियंत्रित करने के लिए स्विचिंग यंत्र का उपयोग करते हैं। दो चरण के चक्र में, पहले चरण में एक संधारित्र आपूर्ति से जुड़ा होता है, इसे उसी वोल्टेज पर चार्ज करता है। दूसरे चरण में परिपथ को फिर से कॉन्फ़िगर किया जाता है ताकि संधारित्र आपूर्ति और भार के साथ श्रृंखला में हो। यह भार से वोल्टेज को दोगुना करता है - मूल आपूर्ति और संधारित्र वोल्टेज का योग। आउटपुट संधारित्र के उपयोग से उच्च वोल्टेज स्विच किए गए आउटपुट की स्पंदन प्रकृति ज्यादातर समतल होती है।

एक बाहरी या द्वितीयक परिपथ स्विचिंग को चलाता है, सामान्य तौर पर दसियों किलोहर्ट्ज़ से कई मेगाहर्ट्ज़ तक। उच्च आवृत्ति आवश्यक क्षमता को कम करती है, क्योंकि छोटे चक्र में कम चार्ज को संग्रहीत करने और डंप करने की आवश्यकता होती है।

चार्ज पंप वोल्टेज को दोगुना कर सकते हैं, ट्रिपल वोल्टेज, हालव वोल्टेज, इनवर्ट वोल्टेज, फैरेक्शनली मल्टीप्लाई या स्केल वोल्टेज (जैसे ×3/2, ×4/3, ×2/3, आदि) और मोड के बीच जल्दी से बारी-बारी से आरबिटअरी वोल्टेज उत्पन्न कर सकते हैं जो नियंत्रक और परिपथ टोपोलॉजी पर निर्भर करता है।

परिपथ्री के विभिन्न हिस्सों के लिए वोल्टेज बढ़ाने और कम करने के लिए वे प्राय: लो-पावर इलेक्ट्रॉनिक्स (जैसे मोबाइल फोन) में उपयोग किए जाते हैं - आपूर्ति वोल्टेज को सावधानीपूर्वक नियंत्रित करके बिजली की खपत को कम करना।

पीएलएल के लिए शब्दावली

चार्ज पंप शब्द का उपयोग प्राय: फेज-लॉक लूप (पीएलएल) परिपथ में भी किया जाता है, हालांकि ऊपर चर्चा की गई परिपथ के विपरीत इसमें कोई पंपिंग क्रिया सम्मिलित नहीं है। पीएलएल चार्ज पंप केवल एक द्विध्रुवीय स्विचित करंट स्रोत है। इसका मतलब यह है कि यह श्रणात्मक और धनात्मक करंट पर्लस को पीएलएल के लूप फिल्टर में आउटपुट कर सकता है। यह अपनी शक्ति और जमीनी आपूर्ति स्तरों से ज्यादा या कम वोल्टेज का उत्पादन नहीं कर सकता है।

अनुप्रयोग

  • चार्ज-पंप परिपथ के लिए एक सामान्य अनुप्रयोग RS-232 तर्क स्तर में है, जहां उनका उपयोग श्रणात्मक और धनात्मक वोल्टेज (अक्सर +10 V और -10 V) को एक 5 V या 3 V बिजली आपूर्ति रेल से प्राप्त करने के लिए किया जाता है।
  • चार्ज पंपों को एलसीडी या सफेद-एलईडी चालकों के रूप में भी इस्तेमाल किया जा सकता है, जो बैटरी जैसे एकल कम-वोल्टेज आपूर्ति से उच्च बायस वोल्टेज उत्पन्न करता है।
  • नकारात्मक वोल्टेज "वीबीबी" (लगभग -3 V) उत्पन्न करने के लिए NMOS मेमोरी और माइक्रोप्रोसेसरों में चार्ज पंपों का बड़े पैमाने पर उपयोग किया जाता है, जो सब्सट्रेट से जुड़ा होता है। यह गारंटी देता है कि सभी N+ - टू - सब्सट्रेट जंक्शन 3 V या उससे अधिक के रिवर्स बायस्ड हैं, जिससे जंक्शन कैपेसिटेंस घट रहा है और परिपथ गति बढ़ा रहा है।[1]
  • निन्टेंडो एंटरटेनमेंट सिस्टम लॉकआउट चिप को अचेत (stun) करने के लिए एक नकारात्मक वोल्टेज स्पाइक प्रदान करने वाले चार्ज पंप का उपयोग NES-अनुरूप गेम में किया गया है, जो निंटेंडो द्वारा लाइसेंस प्राप्त नहीं है।[2]
  • 2007 तक, चार्ज पंप लगभग सभी EEPROM और फ्लैश मेमोरी एकीकृत परिपथ में संघटित हो गए हैं। इन उपकरणों को किसी विशेष मेमोरी सेल में उपस्थिति डेटा को नए मूल्य के साथ लिखे जाने से पहले "क्लीन आउट" करने के लिए एक उच्च-वोल्टेज पल्स की आवश्यकता होती है। प्रारंभिक EEPROM और फ्लैश-मेमोरी उपकरणों को दो बिजली की आपूर्ति की आवश्यकता होती है: +5 V (पढ़ने के लिए) और +12 V (मिटाने के लिए)।
  • As of {{{1}}}[[Category:Articles containing potentially dated statements from Expression error: Unexpected < operator.]],2007 तक व्यावसायिक रूप से उपलब्ध फ्लैश मेमोरी और EEPROM मेमोरी के लिए केवल एक बाहरी बिजली आपूर्ति की आवश्यकता होती है - सामान्य तौर पर 1.8 V या 3.3 V। एक उच्च वोल्टेज, जिसका उपयोग सेल को मिटाने के लिए किया जाता है, एक ऑन-चिप चार्ज पंप द्वारा आंतरिक रूप से उत्पन्न होता है।
  • गेट-ड्राइविंग हाई-साइड एन-चैनल पावर एमओएसएफईटी और आईजीबीटी के लिए हाई-साइड ड्राइवरों में एच ब्रिज में चार्ज पंप का उपयोग किया जाता है। जब हाफ ब्रिज का केंद्र कम हो जाता है, तो संधारित्र को एक डायोड के माध्यम से चार्ज किया जाता है, और इस चार्ज का उपयोग बाद में उच्च-पक्ष FET के गेट को स्रोत वोल्टेज से कुछ वोल्ट ऊपर चलाने के लिए किया जाता है ताकि इसे चालू किया जा सके। यह रणनीति अच्छी तरह से काम करती है, बशर्ते पुल नियमित रूप से स्विच किया जाता है और एक अलग बिजली आपूर्ति चलाने की जटिलता से बचा जाता है और दोनों स्विचों के लिए अधिक कुशल एन-चैनल उपकरणों का उपयोग करने की अनुमति देता है। यह परिपथ (हाई-साइड एफईटी के आवधिक स्विचिंग की आवश्यकता होती है) को "बूटस्ट्रैप" परिपथ भी कहा जा सकता है और कुछ इसके और चार्ज पंप के बीच अंतर करेंगे (जिसके लिए उस स्विचिंग की आवश्यकता नहीं होगी)।
  • CRT मॉनिटर में वर्टिकल डिफ्लेक्शन परिपथ उदाहरण के लिए ic TDA1670A के उपयोग के साथ। अधिकतम विचलन प्राप्त करने के लिए, CRT कॉइल को ~ 50v की आवश्यकता होती है। 24v आपूर्ति लाइन से चार्ज पंप ट्रिक दूसरे वोल्टेज की आवश्यकता को समाप्त कर देता है।
  • मोबाइल उपकरणों के लिए उच्च-शक्ति चार्ज नियंत्रक समाधान वोल्टेज को कम करने के लिए बक कनवर्टर के बजाय चार्ज पंप पर निर्भर करते हैं, क्योंकि उच्च दक्षता गर्मी उत्पादन को कम करती है। सैमसंग गैलेक्सी S23, जो 3A का इनपुट करंट लेता है और अपने आंतरिक बैटरी पैक को 6A पर 2:1 करंट पंप चार्ज कर सकता है।[3] Oppo का 240W SUPERVOOC और भी आगे है और 24V/10A से 10V/24A में तक जाने के लिए समानांतर (98% दक्षता का दावा किया गया है[4]) में तीन चार्ज पंप का उपयोग करता है, जिसे दो समानांतर बैटरी पैक द्वारा लिया जाता है।


यह भी देखें

संदर्भ

  1. Jenne, F. "Substrate Bias Circuit", US Patent 3794862A, Feb 26, 1974.
  2. Kevin Horton. Colordreams Revision C. Last modified 2007-09-30. Accessed 2011-09-15.
  3. Release, Press (25 July 2022). "Smartphones - 2:1 Charge Pump Direct Charger". Power Electronics News.
  4. "OPPO 超级闪充四大技术全面突破,布局多终端、多场景闪充生态 | OPPO 官方网站". OPPO (in 中文(中国大陆)).

Applying the equivalent resistor concept to calculating the power losses in the charge pumps

Charge pumps where the voltages across the capacitors follow the binary number system

  • Ueno, F.; Inoue, T.; Oota, I. (1986). "Realization of a new switched-capacitor transformer with a step-up transformer ratio 2n–1 using n capacitors". IEEE International Symposium on Circuits and Systems (ISCAS). pp. 805–8.
  • Starzyk, J.A.; Ying-Wei Jan; Fengjing Qiu (March 2001). "A DC-DC charge pump design based on voltage doublers". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 48 (3): 350–9. doi:10.1109/81.915390.
  • Fang Lin Luo; Hong Ye (June 2004). "Positive output multiple-lift push-pull switched-capacitor Luo-converters". IEEE Transactions on Industrial Electronics. 51 (3): 594–602. doi:10.1109/TIE.2004.825344. S2CID 22202569.
  • Ben-Yaakov, S.; Kushnerov, A. (2009). "Algebraic foundation of self adjusting Switched Capacitors Converters". 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA. pp. 1582–9. doi:10.1109/ECCE.2009.5316143. ISBN 978-1-4244-2893-9. S2CID 12915415.
  • Allasasmeh, Y.; Gregori, S. (November 2018). "High-performance switched-capacitor boost-buck integrated power converters". IEEE Transactions on Circuits and Systems I, Regular Papers. 65 (11): 3970–3983. doi:10.1109/TCSI.2018.2863239. ISSN 1558-0806. S2CID 52932169.


बाहरी संबंध