जुड़ें और मिलें

From Vigyanwiki
Revision as of 13:18, 1 March 2023 by alpha>Indicwiki (Created page with "{{Binary relations}} thumb|यह [[हस्से आरेख चार तत्वों के साथ आंशिक रूप से आ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
यह हस्से आरेख चार तत्वों के साथ आंशिक रूप से आदेशित सेट को दर्शाता है: ए, बी, अधिकतम तत्व b a और b के जुड़ने के बराबर है, और न्यूनतम तत्व a b a और b के मिलने के बराबर है। अधिकतम/न्यूनतम तत्व का जुड़ना/मिलना और दूसरा तत्व अधिकतम/न्यूनतम तत्व है और इसके विपरीत किसी अन्य तत्व के साथ अधिकतम/न्यूनतम तत्व का मिलना/जुड़ना अन्य तत्व है। इस प्रकार इस पोसेट में प्रत्येक जोड़ी में एक मिलन और जुड़ाव दोनों होते हैं और पोसेट को एक जाली (आदेश सिद्धांत) के रूप में वर्गीकृत किया जा सकता है।

गणित में, विशेष रूप से आदेश सिद्धांत, एक सबसेट का जुड़ाव आंशिक रूप से आदेशित सेट का की सर्वोच्च (कम से कम ऊपरी सीमा) है लक्षित और इसी तरह, की मुलाकात सबसे कम (सबसे बड़ी निचली सीमा) है, जिसे निरूपित किया गया है सामान्य तौर पर, आंशिक रूप से ऑर्डर किए गए सेट के सबसेट में शामिल होने और मिलने की आवश्यकता नहीं होती है। शामिल हों और मिलें आदेश व्युत्क्रम के संबंध में एक दूसरे से द्वैत (आदेश सिद्धांत) हैं।

एक आंशिक रूप से ऑर्डर किया गया सेट जिसमें सभी जोड़े शामिल होते हैं, एक ज्वाइन-सेमी-जाली होता है। दोहरी रूप से, एक आंशिक रूप से आदेशित सेट जिसमें सभी जोड़ों का मिलन होता है, एक मिलन-सेमिलैटिस है। एक आंशिक रूप से ऑर्डर किया गया सेट जो कि ज्वाइन-सेमिलैटिस और मिलना-अर्ध-जाली दोनों है, एक जाली (आदेश) है। एक जाली जिसमें हर उपसमुच्चय, न कि हर जोड़ी, एक मिलन और एक जुड़ाव रखती है, एक पूर्ण जाली है। एक आंशिक जाली को परिभाषित करना भी संभव है, जिसमें सभी जोड़ियों का मिलना या जुड़ना नहीं है, लेकिन संचालन (जब परिभाषित) कुछ स्वयंसिद्धों को संतुष्ट करते हैं।[1]

कुल आदेश के उपसमुच्चय का जुड़ना/मिलना उस उपसमुच्चय का अधिकतम/न्यूनतम तत्व है, यदि ऐसा कोई तत्व मौजूद है।

यदि एक उपसमुच्चय आंशिक रूप से आदेशित सेट का एक (ऊपर की ओर) निर्देशित सेट भी है, तो इसका जुड़ाव (यदि यह मौजूद है) एक निर्देशित जुड़ाव या निर्देशित सर्वोच्च कहा जाता है। दो तरह से, अगर एक नीचे की ओर निर्देशित सेट है, तो इसका मिलन (यदि यह मौजूद है) एक निर्देशित मिलन या निर्देशित न्यूनतम है।

परिभाषाएँ

आंशिक आदेश दृष्टिकोण

होने देना आंशिक क्रम के साथ एक सेट बनें और जाने तत्व का कहा जाता हैmeet (याgreatest lower bound याinfimum) का और द्वारा दर्शाया गया है यदि निम्नलिखित दो शर्तें पूरी होती हैं:

  1. (वह है, की निचली सीमा है ).
  2. किसी के लिए अगर तब (वह है, की किसी अन्य निचली सीमा से अधिक या उसके बराबर है ).

मिलने की आवश्यकता नहीं है, या तो जोड़ी के पास कोई निचली सीमा नहीं है, या चूंकि निचली सीमाओं में से कोई भी अन्य सभी से अधिक नहीं है। हालांकि, अगर कोई मुलाकात होती है तो यह अद्वितीय है, क्योंकि यदि दोनों की सबसे निचली सीमाएँ हैं तब और इस तरह [2] यदि तत्वों के सभी जोड़े नहीं हैं एक बैठक है, तो बैठक को अभी भी आंशिक फ़ंक्शन बाइनरी ऑपरेशन के रूप में देखा जा सकता है [1]

यदि मिलन मौजूद है तो इसे निरूपित किया जाता है यदि तत्वों के सभी जोड़े से मीट है, तो मीट एक बाइनरी ऑपरेशन है और यह देखना आसान है कि यह ऑपरेशन निम्नलिखित तीन शर्तों को पूरा करता है: किसी भी तत्व के लिए <ओल प्रकार = ए>

<ली> (क्रमविनिमेयता ), <ली> (साहचर्य), और <ली> (आलस्य)। </ओल> जोड़ परिभाषित द्वैत (आदेश सिद्धांत) के शामिल होने के साथ हैं यदि यह मौजूद है, द्वारा निरूपित तत्व का हैjoin (याleast upper bound याsupremum) का में यदि निम्नलिखित दो शर्तें पूरी होती हैं:

  1. (वह है, की ऊपरी सीमा है ).
  2. किसी के लिए अगर तब (वह है, की किसी अन्य ऊपरी सीमा से कम या उसके बराबर है ).

सार्वभौमिक बीजगणित दृष्टिकोण

परिभाषा के अनुसार, एक बाइनरी ऑपरेशन एक सेट पर एक है meet यदि यह तीन स्थितियों a, b, और c को संतुष्ट करता है। जोड़ी फिर एक मिलन-सेमिलैटिस है। इसके अलावा, हम तब एक द्विआधारी संबंध को परिभाषित कर सकते हैं ए पर, यह कहकर अगर और केवल अगर वास्तव में, यह संबंध एक आंशिक क्रम है दरअसल, किसी भी तत्व के लिए

  • तब से सी द्वारा;
  • अगर तब ए द्वारा; और
  • अगर तब के बाद से बी द्वारा।

मिलते हैं और जुड़ते हैं दोनों इस परिभाषा को समान रूप से संतुष्ट करते हैं: कुछ संबद्ध मिलने और जुड़ने के संचालन से आंशिक आदेश मिलते हैं जो एक दूसरे के विपरीत होते हैं। इनमें से किसी एक ऑर्डर को मुख्य के रूप में चुनते समय, यह भी तय किया जाता है कि कौन सा ऑपरेशन एक मीट माना जाता है (एक ही ऑर्डर देने वाला) और जिसे एक जॉइन माना जाता है (दूसरा वाला)।

दृष्टिकोण की समानता

अगर एक आंशिक रूप से क्रमबद्ध सेट है, जैसे कि तत्वों की प्रत्येक जोड़ी मिलना है, तो वास्तव में अगर और केवल अगर चूंकि बाद के मामले में वास्तव में की निचली सीमा है और तबसे है greatest लोअर बाउंड अगर और केवल अगर यह लोअर बाउंड है। इस प्रकार, सार्वभौमिक बीजगणित दृष्टिकोण में मीट द्वारा परिभाषित आंशिक क्रम मूल आंशिक क्रम के साथ मेल खाता है।

इसके विपरीत यदि एक मिलन-सेमिलैटिस और आंशिक क्रम है सार्वभौमिक बीजगणित दृष्टिकोण के रूप में परिभाषित किया गया है, और कुछ तत्वों के लिए तब की सबसे बड़ी निचली सीमा है इसके संबंध में तब से

और इसलिए इसी प्रकार, और अगर की एक और निचली सीमा है तब जहां से
इस प्रकार, मूल मिलन द्वारा परिभाषित आंशिक क्रम द्वारा परिभाषित एक मिलन होता है, और दोनों मिलते हैं।

दूसरे शब्दों में, दो दृष्टिकोण अनिवार्य रूप से समतुल्य अवधारणाएं उत्पन्न करते हैं, एक बाइनरी रिलेशन और बाइनरी ऑपरेशन दोनों से लैस एक सेट, जैसे कि इनमें से प्रत्येक संरचना दूसरे को निर्धारित करती है, और क्रमशः आंशिक ऑर्डर या मिलने की शर्तों को पूरा करती है।

सामान्य उपसमूहों की बैठकें

अगर एक मीट-सेमिलैटिस है, तो मीट को पुनरावृत्त बाइनरी ऑपरेशंस में वर्णित तकनीक द्वारा किसी भी खाली सेट | गैर-रिक्त परिमित सेट के एक अच्छी तरह से परिभाषित मीट तक बढ़ाया जा सकता है। वैकल्पिक रूप से, यदि मीट परिभाषित करता है या एक आंशिक क्रम द्वारा परिभाषित किया जाता है, तो इसके कुछ सबसेट वास्तव में इसके संबंध में इन्फिमा है, और इस तरह के इन्फिनिमम को उपसमुच्चय के रूप में मानना ​​​​उचित है। गैर-रिक्त परिमित उपसमुच्चय के लिए, दो दृष्टिकोण समान परिणाम देते हैं, और इसलिए या तो मिलने की परिभाषा के रूप में लिया जा सकता है। मामले में जहां each का भाग वास्तव में एक मुलाकात है एक पूर्ण जाली है; विवरण के लिए, पूर्णता (आदेश सिद्धांत) देखें।

उदाहरण

अगर कुछ बिजली सेट आंशिक रूप से सामान्य तरीके से आदेश दिया जाता है (द्वारा ) तो जोड़ संघ हैं और मिलन चौराहे हैं; प्रतीकों में, (जहां इन प्रतीकों की समानता को याद रखने के लिए एक स्मृति चिन्ह के रूप में इस्तेमाल किया जा सकता है ज्वाइन / सुप्रीमम और को दर्शाता है मिलना/निम्न दर्शाता है[note 1]).

अधिक आम तौर पर, मान लीजिए कुछ सेट के सेट का परिवार है वह आंशिक आदेश है अगर मनमानी यूनियनों और मनमाने चौराहों के तहत बंद है और यदि के संबंधित तब

लेकिन अगर तब यूनियनों के तहत बंद नहीं है में मौजूद है अगर और केवल अगर वहाँ एक अद्वितीय मौजूद है -सबसे छोटा ऐसा है कि उदाहरण के लिए, यदि तब जबकि अगर तब मौजूद नहीं है क्योंकि सेट की केवल ऊपरी सीमाएँ हैं में यह संभवतः हो सकता है least ऊपरी सीमा लेकिन और अगर तब मौजूद नहीं है क्योंकि इसकी कोई ऊपरी सीमा नहीं है में


यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Grätzer 1996, p. 52.
  2. Hachtel, Gary D.; Somenzi, Fabio (1996). तर्क संश्लेषण और सत्यापन एल्गोरिदम. Kluwer Academic Publishers. p. 88. ISBN 0792397460.
  1. It can be immediately determined that supremums and infimums in this canonical, simple example are respectively. The similarity of the symbol to and of to may thus be used as a mnemonic for remembering that in the most general setting, denotes the supremum (because a supremum is a bound from above, just like is "above" and ) while denotes the infimum (because an infimum is a bound from below, just like is "below" and ). This can also be used to remember whether meets/joins are denoted by or by Intuition suggests that "join"ing two sets together should produce their union which looks similar to so "join" must be denoted by Similarly, two sets should "meet" at their intersection which looks similar to so "meet" must be denoted by


संदर्भ