समरूपता अवयव

From Vigyanwiki
Revision as of 12:36, 2 March 2023 by alpha>Abhishek

गणित में, एक समुच्चय पर संचालित द्विआधारी ऑपरेशन (द्विआधारी संचालन) का समरूपता अवयव, या तटस्थ तत्व, समुच्चय का तत्व है जो संचालन प्रयुक्त होने पर समुच्चय के प्रत्येक तत्व को अपरिवर्तित छोड़ देता है।[1][2] इस अवधारणा का उपयोग बीजगणितीय संरचनाओं जैसे कि समूहों और वलयों में किया जाता है। सर्वसमिका(सर्वसमिका) तत्व शब्द को प्रायः सर्वसमिका के लिए छोटा किया जाता है (जैसा कि योगात्मक सर्वसमिका और गुणक सर्वसमिका की स्थितियों में)[3] जब भ्रम की कोई संभावना नहीं होती है, किंतु सर्वसमिका अंतर्निहित रूप से उस द्विआधारी संचालन पर निर्भर करती है जिससे यह जुड़ा हुआ है।

परिभाषाएँ

होने देना (S, ∗) एक समुच्चय हो S द्विआधारी संचालन से लैस ∗। फिर एक तत्व e का S a कहा जाता है left identity यदि es = s सभी के लिए s में S, और a right identity यदि se = s सभी के लिए s में S.[4] यदि e एक बायीं सर्वसमिका और एक सही सर्वसमिका दोनों है, तो इसे a कहा जाता है two-sided identity, या बस एक identity.[5][6][7][8][9]

जोड़ के संबंध में एक सर्वसमिका को योगात्मक तत्समक कहा जाता है|additive identity (प्रायः 0 के रूप में दर्शाया जाता है) और गुणन के संबंध में एक सर्वसमिका को कहा जाता है multiplicative identity(प्रायः 1 के रूप में दर्शाया जाता है)।[3] इन्हें सामान्य जोड़ और गुणा करने की आवश्यकता नहीं है - क्योंकि अंतर्निहित संचालन मनमाना हो सकता है। उदाहरण के लिए एक समूह के स्थितियों में, समरूपता अवयव को कभी-कभी केवल प्रतीक द्वारा निरूपित किया जाता है . योज्य और गुणक सर्वसमिका के बीच अंतर का उपयोग प्रायः उन समुच्चयों के लिए किया जाता है जो दोनों द्विआधारी संचालन का समर्थन करते हैं, जैसे कि रिंग, अभिन्न डोमेन और फ़ील्ड है। गुणात्मक सर्वसमिका को प्रायः कहा जाता हैunityबाद के संदर्भ में (एकता के साथ एक वलय )।[10][11][12] इसे रिंग थ्योरी में एक इकाई (रिंग सिद्धांत) के साथ भ्रमित नहीं होना चाहिए, जो कि गुणक व्युत्क्रम वाला कोई भी तत्व है। अपनी परिभाषा के अनुसार, एकता अपने आप में अनिवार्य रूप से एक इकाई है।[13][14]

उदाहरण

समूह संचालन सर्वसमिका
वास्तविक संख्याएँ + (जोड़) 0
वास्तविक संख्याएँ · (घटाव) 1
मिश्रित संख्याएँ + (जोड़) 0
मिश्रित संख्याएँ · (गुणा) 1
धनात्मक पूर्णांक न्यूनतम समापवर्तक 1
गैर-ऋणात्मक पूर्णांक महत्तम सामान्य भाजक 0 (जीसीडी की अधिकांश परिभाषाओं के अनुसार)
वैक्टर वैक्टर जोड़ जीरो वैक्टर
m-by-n आव्युह आव्युह जोड़ जीरो आव्युह
n-by-n वर्ग आव्युह आव्युह गुणा In (सर्वसमिका आव्युह)
m-by-n आव्युह ○ (हैडमार्ड उत्पाद) Jm, n (लोगों का आव्युह)
एक समुच्चय M से स्वयं तक सभी प्रकार्य ∘ (प्रकार्य संघटन) सर्वसमिका प्रकार्य
समूह पर सभी वितरण, G सवलन(कनवल्शन) δ (डायराक डेल्टा)
विस्तारित वास्तविक संख्याएँ न्यूनतम/अनंत +∞
विस्तारित वास्तविक संख्याएँ अधिकतम/सर्वोच्च −∞
समुच्चय M के उपसमुच्चय ∩ (प्रतिच्छेदन) M
समुच्चय ∪ (संघ) ∅ (रिक्त समुच्चय)
स्ट्रिंग्स, सूचियाँ संयोजन रिक्त स्ट्रिंग, रिक्त सूची
बूलियन बीजगणित ∧ (तार्किक और) ⊤ (सत्य)
बूलियन बीजगणित ↔ (तार्किक द्विप्रतिबंध) ⊤ (सत्य)
बूलियन बीजगणित ∨ (तार्किक अथवा) ⊥ (असत्यता)
बूलियन बीजगणित ⊕ (विशिष्ट अथवा) ⊥ (असत्यता)
गांठें गांठों का योग बिना गाँठ
सघन सतहें # (जुड़ा हुआ योग) S2
समूह प्रत्यक्ष उत्पाद तुच्छ समूह
दो तत्व, {e, f}  ee = fe = e और
ff = ef = f

द्वारा परिभाषित

e और f दोनों बाईं सर्वसमिका हैं,

लेकिन कोई सही सर्वसमिका नहीं है

और कोई दो पक्षीय सर्वसमिका नहीं

समुच्चय X पर सजातीय संबंध सापेक्ष उत्पाद सर्वसमिका संबंध

गुण

उदाहरण में S = {e, f} दी गई समानता के साथ, S एक अर्धसमूह है। की संभावना को प्रदर्शित करता है (S, ∗) कई वामपंथी सर्वसमिका रखने के लिए। वास्तव में, प्रत्येक तत्व एक वामपंथी सर्वसमिका हो सकता है। इसी तरह, कई सही सर्वसमिका हो सकती हैं। किंतु अगर सही सर्वसमिका और बाईं सर्वसमिका दोनों हैं, तो उन्हें समान होना चाहिए, जिसके परिणामस्वरूप एक दो-पक्षीय सर्वसमिका होती है।

इसे देखने के लिए ध्यान दें कि अगर l एक वाम सर्वसमिका है और r एक सही सर्वसमिका है, फिर l = lr = r. विशेष रूप से, एक से अधिक दो पक्षीय सर्वसमिका कभी नहीं हो सकती है: यदि दो थे, तो कहें e तथा f, फिर ef दोनों के बराबर होना होगा e तथा f.

के लिए भी काफी संभव है (S, ∗) कोई समरूपता अवयव नहीं होने के लिए,[15] जैसे गुणन संक्रिया के अंतर्गत सम पूर्णांकों की स्थिति।[3] एक अन्य सामान्य उदाहरण यूक्लिडियन वेक्टर का क्रॉस उत्पाद है, जहां समरूपता अवयव की अनुपस्थिति इस तथ्य से संबंधित है कि किसी भी गैर-शून्य क्रॉस उत्पाद की दिशा हमेशा किसी भी तत्व के गुणन के लिए ओर्थोगोनल होती है। यही है, मूल के समान दिशा में गैर-शून्य वेक्टर प्राप्त करना संभव नहीं है। फिर भी समरूपता अवयव के बिना संरचना का एक और उदाहरण सकारात्मक संख्या प्राकृतिक संख्याओं के योगात्मक अर्धसमूह को शामिल करता है।

यह भी देखें

नोट्स और संदर्भ

  1. Weisstein, Eric W. "पहचान तत्व". mathworld.wolfram.com (in English). Retrieved 2019-12-01.
  2. "पहचान तत्व की परिभाषा". www.merriam-webster.com. Retrieved 2019-12-01.
  3. 3.0 3.1 3.2 "पहचान तत्व". www.encyclopedia.com. Retrieved 2019-12-01.
  4. Fraleigh (1976, p. 21)
  5. Beauregard & Fraleigh (1973, p. 96)
  6. Fraleigh (1976, p. 18)
  7. Herstein (1964, p. 26)
  8. McCoy (1973, p. 17)
  9. "पहचान तत्व | शानदार गणित और विज्ञान विकी". brilliant.org (in English). Retrieved 2019-12-01.
  10. Beauregard & Fraleigh (1973, p. 135)
  11. Fraleigh (1976, p. 198)
  12. McCoy (1973, p. 22)
  13. Fraleigh (1976, pp. 198, 266)
  14. Herstein (1964, p. 106)
  15. McCoy (1973, p. 22)

ग्रन्थसूची

अग्रिम पठन

  • M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7, p. 14–15