For एक अधिक सामान्य, लेकिन अधिक तकनीकी, स्पर्शरेखा सदिशों का उपचार, see स्पर्शरेखा स्थान.
गणित में स्पर्शरेखा सदिश सदिश (ज्यामिति) होता है जो किसी दिए गए बिंदु पर किसी वक्र या सतह (गणित) पर स्पर्शरेखा होता है। स्पर्शरेखा सदिशों का वर्णन R में वक्रों के संदर्भ में वक्रों की विभेदक ज्यामिति में किया गया है, इस प्रकार अधिकांशतः स्पर्शरेखा सदिश अलग-अलग कई गुना के स्पर्शरेखा स्थान के तत्व होते हैं। स्पर्शरेखा सदिशों को जर्म (गणित) के संदर्भ में भी वर्णित किया जा सकता है। औपचारिक रूप से, बिंदु पर स्पर्शरेखा सदिश कीटाणुओं के सेट द्वारा परिभाषित बीजगणित का रेखीय व्युत्पत्ति (अंतर बीजगणित) द्वारा प्रदर्शित होता हैं।
स्पर्शरेखा सदिश की सामान्य परिभाषा पर आगे बढ़ने से पहले, हम कलन में इसके उपयोग और इसके टेन्सर गुणों पर चर्चा करते हैं।
स्पर्श रेखा
इसमें पैरामीट्रिक चिकना वक्र बनाता हैं। इस प्रकार स्पर्शरेखा वेक्टर द्वारा दिया गया है, जहां हमने पैरामीटर के संबंध में भिन्नता को इंगित करने के लिए सामान्य बिंदु के अतिरिक्त प्राइम t का उपयोग किया है।[1] इसमें इकाई स्पर्शरेखा वेक्टर द्वारा दिया गया है
उदाहरण के लिए यहाँ वक्र दिया गया हैं।
जिसमें इकाई स्पर्शरेखा वेक्टर पर द्वारा दिया गया है
विपरीतता
यदि n-आयामी निर्देशांक प्रणाली n-आयामी निर्देशांक प्रणाली में पैरामीट्रिक रूप xi से दिया गया है, (यहां हमने सामान्य सबस्क्रिप्ट के अतिरिक्त सुपरस्क्रिप्ट को इंडेक्स के रूप में उपयोग किया है)।
या
फिर स्पर्शरेखा सदिश क्षेत्र द्वारा दिया गया है
निर्देशांक के परिवर्तन के अनुसार
स्पर्शरेखा वेक्टर में ui-निर्देशांक प्रणाली किसके द्वारा दी जाती है
जहां हमने आइंस्टीन संकेतन का उपयोग किया है। इसलिए, चिकने वक्र का स्पर्शरेखा सदिश सहप्रसरण के रूप में रूपांतरित होगा और निर्देशांक के परिवर्तन के अनुसार क्रम के सदिशों के प्रतिप्रसरण के रूप में परिवर्तित होगा।[2]
परिभाषा
इस प्रकार इस परिभाषा के अनुसार भिन्न कार्य हो और में वेक्टर बनें तो हम दिशात्मक व्युत्पन्न को बिंदु पर दिशा द्वारा परिभाषित करते हैं।
बिंदु पर स्पर्शरेखा सदिश तब परिभाषित किया जा सकता है[3] जैसे
गुण
इस प्रकार अलग-अलग फं हो, तब इस स्थिति में स्पर्शरेखा वैक्टर पर , और जाने . बनाते हैं तब इस स्थिति में
कई गुना पर स्पर्शरेखा वेक्टर
इस प्रकार अलग करने योग्य कई गुना हो और पर वास्तविक-मूल्यवान भिन्न-भिन्न कार्यों का बीजगणित हो इस स्थिति में स्पर्शरेखा वेक्टर को बिंदु पर कई गुना व्युत्पत्ति (अंतर बीजगणित) द्वारा दिया जाता है जो रैखिक होगा - अर्थात, किसी के लिए भी और द्वारा प्रदर्शित होता हैं इस कारण हमारे सामने उक्त समीकरण व्युत्पन्न होते हैं।
ध्यान दें कि व्युत्पत्ति परिभाषा के अनुसार लीबनिज़ मान को प्रकट करेंगे।