स्ट्रिंग ग्राफ

From Vigyanwiki
Revision as of 13:28, 28 February 2023 by alpha>Indicwiki (Created page with "{{short description|Intersection graph for curves in the plane}} ग्राफ सिद्धांत में, एक स्ट्रिंग ग्राफ स...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

ग्राफ सिद्धांत में, एक स्ट्रिंग ग्राफ समतल वक्र का प्रतिच्छेदन ग्राफ है; प्रत्येक वक्र को एक स्ट्रिंग कहा जाता है। एक ग्राफ दिया (असतत गणित) G, G एक स्ट्रिंग ग्राफ़ है अगर और केवल अगर वक्र, या स्ट्रिंग्स का एक सेट मौजूद है, जैसे कि ग्राफ़ में प्रत्येक वक्र के लिए वर्टेक्स (ग्राफ़ थ्योरी) है और वक्रों की प्रत्येक प्रतिच्छेदन जोड़ी के लिए एक किनारा ग्राफ़ समरूपता है G.

पृष्ठभूमि

Seymour Benzer (1959) ने स्ट्रिंग ग्राफ़ के समान एक अवधारणा का वर्णन किया, जैसा कि वे आनुवंशिक संरचनाओं पर लागू होते हैं। उस संदर्भ में, उन्होंने एक रेखा पर अन्तरालों को प्रतिच्छेद करने के विशिष्ट मामले को भी प्रस्तुत किया, अर्थात् अंतराल ग्राफ़ों का अब शास्त्रीय परिवार। बाद में, Sinden (1966) विद्युत नेटवर्क और मुद्रित सर्किट के लिए समान विचार निर्दिष्ट किया। स्ट्रिंग ग्राफ़ का गणितीय अध्ययन पेपर से शुरू हुआ Ehrlich, Even & Tarjan (1976) और सिंडेन और रोनाल्ड ग्राहम के बीच एक सहयोग के माध्यम से, जहां 1976 में कॉम्बिनेटोरिक्स पर 5वें हंगेरियन कॉलोक्वियम में स्ट्रिंग ग्राफ के लक्षण वर्णन को अंततः एक खुले प्रश्न के रूप में प्रस्तुत किया गया।[1] हालांकि, स्ट्रिंग ग्राफ़ की मान्यता अंततः एनपी-पूर्ण साबित हुई थी, जिसका अर्थ है कि कोई सरल लक्षण वर्णन मौजूद होने की संभावना नहीं है।[2]


संबंधित ग्राफ वर्ग

एक तार ग्राफ के रूप में एक प्लेनर ग्राफ का प्रतिनिधित्व।

प्रत्येक प्लानर ग्राफ एक स्ट्रिंग ग्राफ है:[3] जैसा कि चित्र में दिखाया गया है, शीर्ष के चारों ओर और प्रत्येक आसन्न किनारे के मध्य बिंदु के चारों ओर घूमने वाले प्रत्येक शीर्ष के लिए एक स्ट्रिंग खींचकर एक मनमाने ढंग से विमान-एम्बेडेड ग्राफ का एक स्ट्रिंग ग्राफ प्रतिनिधित्व कर सकता है। ग्राफ के किसी भी किनारे uv के लिए, u और v के लिए तार uv के मध्य बिंदु के पास एक दूसरे को दो बार पार करते हैं, और कोई अन्य क्रॉसिंग नहीं है, इसलिए तार के जोड़े जो क्रॉस करते हैं, मूल प्लानर ग्राफ के निकटवर्ती जोड़े का प्रतिनिधित्व करते हैं। . वैकल्पिक रूप से, सर्कल पैकिंग प्रमेय द्वारा, किसी भी प्लानर ग्राफ को सर्किलों के संग्रह के रूप में दर्शाया जा सकता है, जिनमें से कोई भी दो क्रॉस हो सकता है अगर और केवल अगर संबंधित शिखर निकट हैं; ये वृत्त (शुरुआती और अंतिम बिंदु के साथ उन्हें खुले वक्रों में बदलने के लिए चुने गए) दिए गए प्लानर ग्राफ का एक स्ट्रिंग ग्राफ प्रतिनिधित्व प्रदान करते हैं। Chalopin, Gonçalves & Ochem (2007) ने साबित किया कि प्रत्येक प्लानर ग्राफ़ में एक स्ट्रिंग प्रस्तुति होती है जिसमें ऊपर वर्णित प्रस्तुतियों के विपरीत स्ट्रिंग्स की प्रत्येक जोड़ी में अधिकतम एक क्रॉसिंग पॉइंट होता है।

स्कीनरमैन का अनुमान, जो अब सिद्ध हो चुका है, और भी मजबूत कथन है कि प्रत्येक प्लानर ग्राफ को सीधी रेखा खंडों के प्रतिच्छेदन ग्राफ द्वारा दर्शाया जा सकता है, जो स्ट्रिंग्स का एक बहुत ही विशेष मामला है।

K. का एक उपखंड5 वह एक स्ट्रिंग ग्राफ नहीं है।

यदि किसी दिए गए ग्राफ़ G का प्रत्येक किनारा उपखंड (ग्राफ़ सिद्धांत) है, तो परिणामी ग्राफ़ एक स्ट्रिंग ग्राफ़ है यदि और केवल यदि G समतलीय है। विशेष रूप से, पूर्ण ग्राफ K का उपखंड5 उदाहरण में दिखाया गया एक स्ट्रिंग ग्राफ नहीं है, क्योंकि K5 समतलीय नहीं है।[3]

प्रत्येक वृत्त ग्राफ, रेखा खंडों (एक वृत्त की जीवा) के प्रतिच्छेदन ग्राफ़ के रूप में, एक स्ट्रिंग ग्राफ़ भी है। प्रत्येक कॉर्डल ग्राफ़ को एक स्ट्रिंग ग्राफ़ के रूप में दर्शाया जा सकता है: कॉर्डल ग्राफ़ पेड़ों के सबट्रीज़ के प्रतिच्छेदन ग्राफ़ हैं, और एक कॉर्डल ग्राफ़ का एक स्ट्रिंग प्रतिनिधित्व बना सकता है जो संबंधित पेड़ के एक प्लानर एम्बेडिंग का निर्माण करता है और प्रत्येक सबट्री को एक स्ट्रिंग द्वारा प्रतिस्थापित करता है जो ट्रेस करता है सबट्री के किनारों के आसपास।

प्रत्येक तुलनात्मक ग्राफ का पूरक ग्राफ भी एक स्ट्रिंग ग्राफ है।[4]


अन्य परिणाम

Ehrlich, Even & Tarjan (1976) ने एनपी-हार्ड होने के लिए स्ट्रिंग ग्राफ़ की रंगीन संख्या की गणना की। Kratochvil (1991a) ने पाया कि स्ट्रिंग ग्राफ़ एक प्रेरित माइनर क्लोज्ड क्लास बनाते हैं, लेकिन ग्राफ़ के माइनर क्लोज्ड क्लास नहीं।

प्रत्येक एम-एज स्ट्रिंग ग्राफ को दो उपसमुच्चयों में विभाजित किया जा सकता है, प्रत्येक एक स्थिर अंश पूरे ग्राफ का आकार, O(m) को हटाकर3/4लॉग1/2मी) शिखर। यह इस प्रकार है कि बिक्लिक-मुक्त ग्राफ | बिक्लिक-मुक्त स्ट्रिंग ग्राफ, स्ट्रिंग ग्राफ़ जिसमें कोई के नहीं हैt,t कुछ स्थिर टी के लिए सबग्राफ, ओ (एन) किनारे हैं और अधिक दृढ़ता से विस्तारित विस्तार है।[5]


टिप्पणियाँ

  1. Graham (1976).
  2. Kratochvil (1991b) showed string graph recognition to be NP-hard, but was not able to show that it could be solved in NP. After intermediate results by Schaefer & Štefankovič (2001) and Pach & Tóth (2002), Schaefer, Sedgwick & Štefankovič (2003) completed the proof that the problem is NP-complete.
  3. 3.0 3.1 Schaefer & Štefankovič (2001) credit this observation to Sinden (1966).
  4. Golumbic, Rotem & Urrutia (1983) and Lovász (1983). See also Fox & Pach (2010).
  5. Fox & Pach (2010); Dvořák & Norin (2015).


संदर्भ