प्रतिरूप भविष्यसूचक नियंत्रण

From Vigyanwiki
Revision as of 22:04, 13 February 2023 by alpha>Indicwiki (Created page with "मॉडल प्रेडिक्टिव कंट्रोल (एमपीसी) प्रक्रिया नियंत्रण का एक उन्न...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

मॉडल प्रेडिक्टिव कंट्रोल (एमपीसी) प्रक्रिया नियंत्रण का एक उन्नत तरीका है जिसका उपयोग बाधाओं के एक सेट को संतुष्ट करते हुए प्रक्रिया को नियंत्रित करने के लिए किया जाता है। यह 1980 के दशक से रासायनिक संयंत्रों और तेल रिफाइनरियों में औद्योगिक प्रक्रिया उद्योगों में उपयोग में है। हाल के वर्षों में इसका उपयोग विद्युत प्रणाली बैलेंसिंग मॉडल में भी किया गया है[1] और बिजली के इलेक्ट्रॉनिक्स में।[2] मॉडल भविष्य कहनेवाला नियंत्रक प्रक्रिया के गतिशील मॉडल पर भरोसा करते हैं, अक्सर सिस्टम पहचान द्वारा प्राप्त रैखिक अनुभवजन्य मॉडल। एमपीसी का मुख्य लाभ यह तथ्य है कि यह भविष्य के समय स्लॉट को ध्यान में रखते हुए वर्तमान समय स्लॉट को अनुकूलित करने की अनुमति देता है। यह एक परिमित समय-क्षितिज को अनुकूलित करके प्राप्त किया जाता है, लेकिन केवल वर्तमान समयावधि को लागू करना और फिर बार-बार अनुकूलित करना, इस प्रकार एक रैखिक-द्विघात नियामक (रैखिक-द्विघात नियामक) से भिन्न होता है। साथ ही एमपीसी में भविष्य की घटनाओं का अनुमान लगाने की क्षमता है और वह तदनुसार नियंत्रण कार्रवाई कर सकती है। पीआईडी ​​​​नियंत्रक नियंत्रकों के पास यह भविष्यवाणी करने की क्षमता नहीं है। एमपीसी लगभग सार्वभौमिक रूप से एक डिजिटल नियंत्रण के रूप में लागू किया गया है, हालांकि विशेष रूप से डिज़ाइन किए गए एनालॉग सर्किट्री के साथ तेजी से प्रतिक्रिया समय प्राप्त करने में अनुसंधान है।[3] सामान्यीकृत भविष्य कहनेवाला नियंत्रण (GPC) और गतिशील मैट्रिक्स नियंत्रण (DMC) MPC के शास्त्रीय उदाहरण हैं।[4]


सिंहावलोकन

एमपीसी में उपयोग किए जाने वाले मॉडल आम तौर पर जटिल और सरल गतिशील प्रणालियों के व्यवहार का प्रतिनिधित्व करने के लिए होते हैं। एमपीसी नियंत्रण एल्गोरिथ्म की अतिरिक्त जटिलता की आम तौर पर सरल प्रणालियों के पर्याप्त नियंत्रण प्रदान करने की आवश्यकता नहीं होती है, जिन्हें अक्सर सामान्य पीआईडी ​​​​नियंत्रकों द्वारा अच्छी तरह से नियंत्रित किया जाता है। पीआईडी ​​​​नियंत्रकों के लिए मुश्किल होने वाली सामान्य गतिशील विशेषताओं में बड़े समय की देरी और उच्च-क्रम की गतिशीलता शामिल हैं।

एमपीसी मॉडल मॉडल सिस्टम के आश्रित चर में परिवर्तन की भविष्यवाणी करते हैं जो स्वतंत्र चर में परिवर्तन के कारण होगा। एक रासायनिक प्रक्रिया में, नियंत्रक द्वारा समायोजित किए जा सकने वाले स्वतंत्र चर अक्सर या तो नियामक पीआईडी ​​​​नियंत्रकों (दबाव, प्रवाह, तापमान, आदि) या अंतिम नियंत्रण तत्व (वाल्व, डैम्पर्स, आदि) के सेटपॉइंट होते हैं। नियंत्रक द्वारा समायोजित नहीं किए जा सकने वाले स्वतंत्र चर का उपयोग गड़बड़ी के रूप में किया जाता है। इन प्रक्रियाओं में निर्भर चर अन्य माप हैं जो या तो नियंत्रण उद्देश्यों या प्रक्रिया बाधाओं का प्रतिनिधित्व करते हैं।

एमपीसी वर्तमान संयंत्र माप, प्रक्रिया की वर्तमान गतिशील स्थिति, एमपीसी मॉडल, और निर्भर चर में भविष्य के परिवर्तनों की गणना करने के लिए प्रक्रिया चर लक्ष्य और सीमा का उपयोग करता है। स्वतंत्र और आश्रित चर दोनों पर बाधाओं का सम्मान करते हुए इन परिवर्तनों की गणना आश्रित चर को लक्ष्य के करीब रखने के लिए की जाती है। एमपीसी आमतौर पर लागू होने वाले प्रत्येक स्वतंत्र चर में केवल पहला परिवर्तन भेजता है, और अगले परिवर्तन की आवश्यकता होने पर गणना को दोहराता है।

जबकि कई वास्तविक प्रक्रियाएं रैखिक नहीं होती हैं, उन्हें अक्सर एक छोटी ऑपरेटिंग रेंज पर लगभग रैखिक माना जा सकता है। मॉडल और प्रक्रिया के बीच संरचनात्मक बेमेल के कारण भविष्यवाणी त्रुटियों की भरपाई के लिए एमपीसी के फीडबैक तंत्र के साथ अधिकांश अनुप्रयोगों में रैखिक एमपीसी दृष्टिकोण का उपयोग किया जाता है। मॉडल प्रेडिक्टिव कंट्रोलर्स में, जिनमें केवल रैखिक मॉडल होते हैं, रैखिक बीजगणित का सुपरपोज़िशन सिद्धांत आश्रित चर की प्रतिक्रिया की भविष्यवाणी करने के लिए एक साथ जोड़े जाने वाले कई स्वतंत्र चर में परिवर्तन के प्रभाव को सक्षम बनाता है। यह प्रत्यक्ष मैट्रिक्स बीजगणित गणनाओं की एक श्रृंखला के लिए नियंत्रण समस्या को सरल करता है जो तेज और मजबूत हैं।

जब रैखिक मॉडल वास्तविक प्रक्रिया गैर-रैखिकताओं का प्रतिनिधित्व करने के लिए पर्याप्त रूप से सटीक नहीं होते हैं, तो कई दृष्टिकोणों का उपयोग किया जा सकता है। कुछ मामलों में, गैर-रैखिकता को कम करने के लिए रैखिक एमपीसी मॉडल के पहले और/या बाद में प्रक्रिया चर को रूपांतरित किया जा सकता है। प्रक्रिया को गैर-रैखिक एमपीसी के साथ नियंत्रित किया जा सकता है जो सीधे नियंत्रण अनुप्रयोग में एक गैर-रैखिक मॉडल का उपयोग करता है। गैर-रैखिक मॉडल एक अनुभवजन्य डेटा फिट (जैसे कृत्रिम तंत्रिका नेटवर्क) या मौलिक द्रव्यमान और ऊर्जा संतुलन के आधार पर एक उच्च-निष्ठा गतिशील मॉडल के रूप में हो सकता है। गैर-रैखिक मॉडल को कलमन फिल्टर प्राप्त करने के लिए रैखिक किया जा सकता है या रैखिक एमपीसी के लिए एक मॉडल निर्दिष्ट किया जा सकता है।

El-Gherwi, Budman, और El Kamel द्वारा एक एल्गोरिथम अध्ययन से पता चलता है कि एक गैर-परिवर्तित कार्यान्वयन के तुलनात्मक प्रदर्शन को बनाए रखते हुए दोहरे-मोड दृष्टिकोण का उपयोग ऑनलाइन संगणना में महत्वपूर्ण कमी प्रदान कर सकता है। प्रस्तावित एल्गोरिदम नियंत्रकों के बीच सूचनाओं के आदान-प्रदान के आधार पर एन उत्तल अनुकूलन समस्याओं को समानांतर में हल करता है।[5]


एमपीसी के पीछे सिद्धांत

असतत एमपीसी योजना।

एमपीसी प्लांट मॉडल के पुनरावृत्ति, परिमित-क्षितिज अनुकूलन पर आधारित है। समय पर वर्तमान संयंत्र स्थिति का नमूना लिया जाता है और भविष्य में अपेक्षाकृत कम समय क्षितिज के लिए एक लागत न्यूनतम नियंत्रण रणनीति की गणना की जाती है (संख्यात्मक न्यूनीकरण एल्गोरिथ्म के माध्यम से): . विशेष रूप से, एक ऑनलाइन या ऑन-द-फ्लाई गणना का उपयोग राज्य प्रक्षेपवक्र का पता लगाने के लिए किया जाता है जो वर्तमान स्थिति से निकलता है और (यूलर-लैग्रेंज समीकरणों के समाधान के माध्यम से) एक लागत-न्यूनतम नियंत्रण रणनीति समय तक खोजता है। . केवल नियंत्रण रणनीति का पहला चरण लागू किया जाता है, फिर संयंत्र राज्य को फिर से नमूना लिया जाता है और नई वर्तमान स्थिति से गणना दोहराई जाती है, जिससे एक नया नियंत्रण और नया अनुमानित राज्य पथ प्राप्त होता है। भविष्यवाणी क्षितिज आगे बढ़ता रहता है और इस कारण एमपीसी को घटता क्षितिज नियंत्रण भी कहा जाता है। यद्यपि यह दृष्टिकोण इष्टतम नहीं है, व्यवहार में इसने बहुत अच्छे परिणाम दिए हैं। एमपीसी के स्थानीय अनुकूलन के वैश्विक स्थिरता गुणों को समझने के लिए, और सामान्य रूप से एमपीसी पद्धति में सुधार करने के लिए, यूलर-लग्रेंज प्रकार के समीकरणों के समाधान के तेज़ तरीकों को खोजने के लिए बहुत अधिक अकादमिक शोध किया गया है।[6][7]


एमपीसी के सिद्धांत

मॉडल भविष्य कहनेवाला नियंत्रण एक बहुभिन्नरूपी नियंत्रण एल्गोरिथ्म है जो उपयोग करता है:

  • प्रक्रिया का एक आंतरिक गतिशील मॉडल
  • घटते क्षितिज पर एक लागत फलन J
  • नियंत्रण इनपुट यू का उपयोग करके लागत फ़ंक्शन जे को कम करने वाला एक अनुकूलन एल्गोरिदम

अनुकूलन के लिए द्विघात लागत फलन का एक उदाहरण दिया गया है:

बाधाओं (कम/उच्च सीमा) का उल्लंघन किए बिना

: वें नियंत्रित चर (जैसे मापा तापमान)
: </super> संदर्भ चर (अर्थात आवश्यक तापमान)
: वें हेर-फेर करने वाला चर (उदा. नियंत्रण वाल्व)
: भार गुणांक के सापेक्ष महत्व को दर्शाता है
: भार गुणांक सापेक्ष बड़े परिवर्तनों को दंडित करता है

वगैरह।

नॉनलाइनियर एमपीसी

नॉनलाइनियर मॉडल प्रेडिक्टिव कंट्रोल, या NMPC, मॉडल प्रेडिक्टिव कंट्रोल का एक प्रकार है, जो भविष्यवाणी में नॉनलाइनियर सिस्टम मॉडल के उपयोग की विशेषता है। जैसा कि रेखीय एमपीसी में होता है, एनएमपीसी को परिमित भविष्यवाणी क्षितिज पर इष्टतम नियंत्रण समस्याओं के पुनरावृत्त समाधान की आवश्यकता होती है। जबकि ये समस्याएं रैखिक एमपीसी में उत्तल हैं, गैर-रैखिक एमपीसी में वे जरूरी उत्तल नहीं हैं। यह NMPC स्थिरता सिद्धांत और संख्यात्मक समाधान दोनों के लिए चुनौतियाँ खड़ी करता है।[8] NMPC इष्टतम नियंत्रण समस्याओं का संख्यात्मक समाधान आमतौर पर न्यूटन-प्रकार की अनुकूलन योजनाओं का उपयोग करते हुए प्रत्यक्ष इष्टतम नियंत्रण विधियों पर आधारित होता है, इनमें से एक प्रकार में: शूटिंग विधि, प्रत्यक्ष एकाधिक शूटिंग विधियाँ, या सहस्थान विधि।[9] NMPC एल्गोरिदम आमतौर पर इस तथ्य का फायदा उठाते हैं कि लगातार इष्टतम नियंत्रण समस्याएं एक दूसरे के समान होती हैं। यह न्यूटन-प्रकार की समाधान प्रक्रिया को पहले से गणना किए गए इष्टतम समाधान से उपयुक्त रूप से स्थानांतरित अनुमान द्वारा कुशलतापूर्वक प्रारंभ करने की अनुमति देता है, जिससे गणना समय की काफी मात्रा बचती है। बाद की समस्याओं की समानता पथ के बाद के एल्गोरिदम (या रीयल-टाइम पुनरावृत्तियों) द्वारा और भी अधिक शोषण की जाती है जो कभी भी अभिसरण के लिए किसी भी अनुकूलन समस्या को पुनरावृत्त करने का प्रयास नहीं करती है, बल्कि आगे बढ़ने से पहले, सबसे वर्तमान एनएमपीसी समस्या के समाधान की दिशा में केवल कुछ पुनरावृत्तियों को लेती है। अगले एक के लिए, जो उचित रूप से प्रारंभ किया गया है; देखें, उदाहरण के लिए।[10]. गैर-रैखिक अनुकूलन समस्या के लिए एक और आशाजनक उम्मीदवार एक यादृच्छिक अनुकूलन पद्धति का उपयोग करना है। इष्टतम समाधान यादृच्छिक नमूने उत्पन्न करके पाए जाते हैं जो समाधान स्थान में बाधाओं को पूरा करते हैं और लागत फ़ंक्शन के आधार पर इष्टतम समाधान ढूंढते हैं। [11] जबकि अतीत में NMPC अनुप्रयोगों का उपयोग प्रक्रिया और रासायनिक उद्योगों में तुलनात्मक रूप से धीमी नमूना दरों के साथ किया जाता रहा है, नियंत्रक हार्डवेयर और कम्प्यूटेशनल एल्गोरिदम में प्रगति के साथ NMPC को तेजी से लागू किया जा रहा है, उदाहरण के लिए, शर्त,[12] उच्च नमूना दर वाले अनुप्रयोगों के लिए, उदाहरण के लिए, मोटर वाहन उद्योग में, या तब भी जब राज्यों को अंतरिक्ष में वितरित किया जाता है (वितरित पैरामीटर सिस्टम)।[13] वांतरिक्ष में एक अनुप्रयोग के रूप में, हाल ही में, NMPC का उपयोग वास्तविक समय में इष्टतम भू-भाग-निम्नलिखित/परिहार प्रक्षेपवक्र को ट्रैक करने के लिए किया गया है।[14]


स्पष्ट एमपीसी

स्पष्ट एमपीसी (ईएमपीसी) ऑनलाइन एमपीसी के विपरीत, कुछ प्रणालियों के लिए नियंत्रण कानून के तेजी से मूल्यांकन की अनुमति देता है। स्पष्ट एमपीसी पैरामीट्रिक प्रोग्रामिंग तकनीक पर आधारित है, जहां अनुकूलन समस्या के रूप में तैयार की गई एमपीसी नियंत्रण समस्या का समाधान पूर्व-गणना ऑफ़लाइन है।[15] यह ऑफ़लाइन समाधान, यानी, नियंत्रण कानून, अक्सर टुकड़े-टुकड़े रैखिक फ़ंक्शन (पीडब्लूए) के रूप में होता है, इसलिए ईएमपीसी नियंत्रक राज्य अंतरिक्ष के प्रत्येक उप-समूह (नियंत्रण क्षेत्र) के लिए पीडब्ल्यूए के गुणांक को स्टोर करता है, जहां पीडब्ल्यूए स्थिर है, साथ ही साथ सभी क्षेत्रों के कुछ पैरामीट्रिक अभ्यावेदन के गुणांक भी हैं। प्रत्येक क्षेत्र ज्यामितीय रूप से रैखिक एमपीसी के लिए एक उत्तल पॉलीटॉप बन जाता है, आमतौर पर इसके चेहरे के लिए गुणांक द्वारा परिचालित किया जाता है, जिसके लिए परिमाणीकरण (सिग्नल प्रोसेसिंग) सटीकता विश्लेषण की आवश्यकता होती है।[16] इष्टतम नियंत्रण कार्रवाई प्राप्त करने के लिए पहले वर्तमान स्थिति वाले क्षेत्र को निर्धारित करने के लिए कम किया जाता है और दूसरा सभी क्षेत्रों के लिए संग्रहीत PWA गुणांक का उपयोग करके PWA का मात्र मूल्यांकन होता है। यदि क्षेत्रों की कुल संख्या कम है, तो ईएमपीसी के कार्यान्वयन के लिए महत्वपूर्ण कम्प्यूटेशनल संसाधनों की आवश्यकता नहीं होती है (ऑनलाइन एमपीसी की तुलना में) और तेजी से गतिशीलता वाले नियंत्रण प्रणालियों के लिए विशिष्ट रूप से उपयुक्त है।[17] ईएमपीसी की एक गंभीर खामी नियंत्रित प्रणाली के कुछ प्रमुख मापदंडों के संबंध में नियंत्रण क्षेत्रों की कुल संख्या की घातीय वृद्धि है, उदाहरण के लिए, राज्यों की संख्या, इस प्रकार नाटकीय रूप से नियंत्रक मेमोरी आवश्यकताओं में वृद्धि और PWA मूल्यांकन का पहला चरण बनाना, अर्थात कम्प्यूटेशनल रूप से महंगा, वर्तमान नियंत्रण क्षेत्र की खोज करना।

मजबूत एमपीसी

मॉडल प्रेडिक्टिव कंट्रोल के मजबूत वेरिएंट सेट बाउंडेड डिस्टर्बेंस के लिए जिम्मेदार हैं, जबकि यह सुनिश्चित करते हुए कि राज्य की बाधाएं पूरी होती हैं। मजबूत एमपीसी के कुछ मुख्य तरीके नीचे दिए गए हैं।

  • न्यूनतम-अधिकतम एमपीसी। इस सूत्रीकरण में, गड़बड़ी के सभी संभावित विकास के संबंध में अनुकूलन किया जाता है।[18] यह रैखिक मजबूत नियंत्रण समस्याओं का इष्टतम समाधान है, हालांकि इसमें उच्च कम्प्यूटेशनल लागत होती है। न्यूनतम/अधिकतम एमपीसी दृष्टिकोण के पीछे मूल विचार ऑन-लाइन न्यूनतम अनुकूलन को न्यूनतम-अधिकतम समस्या में संशोधित करना है, उद्देश्य समारोह के सबसे खराब मामले को कम करना, अनिश्चितता सेट से सभी संभावित पौधों पर अधिकतम करना।[19]
  • बाधा कस एमपीसी। यहां राज्य की बाधाओं को एक दिए गए मार्जिन से बढ़ाया जाता है ताकि गड़बड़ी के किसी भी विकास के तहत एक प्रक्षेपवक्र की गारंटी दी जा सके।[20]
  • ट्यूब एमपीसी। यह सिस्टम के एक स्वतंत्र नाममात्र मॉडल का उपयोग करता है, और यह सुनिश्चित करने के लिए फीडबैक नियंत्रक का उपयोग करता है कि वास्तविक स्थिति नाममात्र स्थिति में परिवर्तित हो जाती है।[21] राज्य की बाधाओं से आवश्यक अलगाव की मात्रा मजबूत सकारात्मक अपरिवर्तनीय (आरपीआई) सेट द्वारा निर्धारित की जाती है, जो सभी संभावित राज्य विचलनों का सेट है जो फीडबैक नियंत्रक के साथ गड़बड़ी से पेश की जा सकती है।
  • मल्टी-स्टेज एमपीसी। यह नमूने के एक सेट के साथ अनिश्चितता स्थान का अनुमान लगाकर एक परिदृश्य-वृक्ष सूत्रीकरण का उपयोग करता है और दृष्टिकोण गैर-रूढ़िवादी है क्योंकि यह ध्यान में रखता है कि भविष्यवाणी में हर समय चरण में माप की जानकारी उपलब्ध है और हर चरण में निर्णय हो सकते हैं। भिन्न होते हैं और अनिश्चितताओं के प्रभावों का मुकाबला करने के लिए सहारा के रूप में कार्य कर सकते हैं। हालांकि दृष्टिकोण की कमी यह है कि समस्या का आकार अनिश्चितताओं की संख्या और भविष्यवाणी क्षितिज के साथ तेजी से बढ़ता है।[22][23]
  • ट्यूब-एन्हांस्ड मल्टी-स्टेज एमपीसी। यह दृष्टिकोण मल्टी-स्टेज एमपीसी और ट्यूब-आधारित एमपीसी का तालमेल करता है। यह अनिश्चितताओं के वर्गीकरण और भविष्यवाणियों में नियंत्रण कानूनों की पसंद से अनुकूलता और सरलता के बीच वांछित व्यापार-बंद को चुनने के लिए उच्च स्तर की स्वतंत्रता प्रदान करता है।[24][25]


व्यावसायिक रूप से उपलब्ध एमपीसी सॉफ्टवेयर

वाणिज्यिक एमपीसी पैकेज उपलब्ध हैं और आमतौर पर मॉडल की पहचान और विश्लेषण, नियंत्रक डिजाइन और ट्यूनिंग के साथ-साथ नियंत्रक प्रदर्शन मूल्यांकन के लिए उपकरण होते हैं।

व्यावसायिक रूप से उपलब्ध पैकेजों का एक सर्वेक्षण एस.जे. किन और टी.ए. बैजवेल इन कंट्रोल इंजीनियरिंग प्रैक्टिस 11 (2003) 733-764।

एमपीसी बनाम एलक्यूआर

अनुकूलन लागत स्थापित करने की विभिन्न योजनाओं के साथ, मॉडल भविष्य कहनेवाला नियंत्रण और रैखिक-द्विघात नियामक दोनों इष्टतम नियंत्रण की अभिव्यक्ति हैं।

जबकि एक मॉडल भविष्य कहनेवाला नियंत्रक अक्सर निश्चित लंबाई को देखता है, अक्सर त्रुटि कार्यों के स्नातक भारित सेट, रैखिक-द्विघात नियामक सभी रैखिक प्रणाली इनपुट को देखता है और हस्तांतरण फ़ंक्शन प्रदान करता है जो आवृत्ति स्पेक्ट्रम में कुल त्रुटि को कम करेगा, राज्य त्रुटि का व्यापार करेगा इनपुट आवृत्ति के खिलाफ।

इन मूलभूत अंतरों के कारण, LQR में बेहतर वैश्विक स्थिरता गुण हैं, लेकिन MPC में अक्सर स्थानीय रूप से इष्टतम [?] और जटिल प्रदर्शन होता है।

MPC और रैखिक-द्विघात नियामक के बीच मुख्य अंतर यह है कि LQR पूरे समय विंडो (क्षितिज) में अनुकूलन करता है जबकि MPC एक घटती समय खिड़की में अनुकूलन करता है,[4] और यह कि एमपीसी के साथ अक्सर एक नए समाधान की गणना की जाती है जबकि एलक्यूआर पूरे समय क्षितिज के लिए एक ही एकल (इष्टतम) समाधान का उपयोग करता है। इसलिए, एमपीसी आम तौर पर अनुकूलन समस्या को पूरे क्षितिज की तुलना में एक छोटी समय खिड़की में हल करता है और इसलिए एक उप-इष्टतम समाधान प्राप्त कर सकता है। हालाँकि, क्योंकि MPC रैखिकता के बारे में कोई धारणा नहीं बनाता है, यह कठिन बाधाओं के साथ-साथ अपने रैखिक ऑपरेटिंग बिंदु से दूर एक गैर-रैखिक प्रणाली के प्रवास को संभाल सकता है, जो दोनों LQR की बड़ी कमियाँ हैं।

इसका मतलब यह है कि स्थिर निश्चित बिंदुओं से दूर संचालन करते समय एलक्यूआर कमजोर हो सकता है। एमपीसी इन निश्चित बिंदुओं के बीच एक मार्ग का चार्ट बना सकता है, लेकिन समाधान के अभिसरण की गारंटी नहीं है, खासकर अगर समस्या स्थान की उत्तलता और जटिलता के बारे में सोचा गया है।

यह भी देखें

संदर्भ

  1. Michèle Arnold, Göran Andersson. "Model Predictive Control of energy storage including uncertain forecasts" https://www.pscc-central.org/uploads/tx_ethpublications/fp292.pdf
  2. Tobias Geyer: Model predictive control of high power converters and industrial drives, Wiley, London, ISBN 978-1-119-01090-6, Nov. 2016.
  3. Vichik, Sergey; Borrelli, Francesco (2014). "Solving linear and quadratic programs with an analog circuit". Computers & Chemical Engineering. 70: 160–171. doi:10.1016/j.compchemeng.2014.01.011.
  4. 4.0 4.1 Wang, Liuping (2009). Model Predictive Control System Design and Implementation Using MATLAB®. Springer Science & Business Media. pp. xii.
  5. Al-Gherwi, Walid; Budman, Hector; Elkamel, Ali (3 July 2012). "A robust distributed model predictive control based on a dual-mode approach". Computers and Chemical Engineering. 50 (2013): 130–138. doi:10.1016/j.compchemeng.2012.11.002.
  6. Michael Nikolaou, Model predictive controllers: A critical synthesis of theory and industrial needs, Advances in Chemical Engineering, Academic Press, 2001, Volume 26, Pages 131-204
  7. Berberich, Julian; Kohler, Johannes; Muller, Matthias A.; Allgower, Frank (2022). "Linear Tracking MPC for Nonlinear Systems—Part I: The Model-Based Case". IEEE Transactions on Automatic Control. 67 (9): 4390–4405. arXiv:2105.08560. doi:10.1109/TAC.2022.3166872. ISSN 0018-9286. S2CID 234763155.
  8. An excellent overview of the state of the art (in 2008) is given in the proceedings of the two large international workshops on NMPC, by Zheng and Allgower (2000) and by Findeisen, Allgöwer, and Biegler (2006).
  9. J.D. Hedengren; R. Asgharzadeh Shishavan; K.M. Powell; T.F. Edgar (2014). "Nonlinear modeling, estimation and predictive control in APMonitor". Computers & Chemical Engineering. 70 (5): 133–148. doi:10.1016/j.compchemeng.2014.04.013. S2CID 5793446.
  10. Ohtsuka, Toshiyuki (2004). "A continuation/GMRES method for fast computation of nonlinear receding horizon control". Automatica. 40 (4): 563–574. doi:10.1016/j.automatica.2003.11.005.
  11. Muraleedharan, Arun (2022). "Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving". IEEE Transactions on Intelligent Vehicles. 7 (1): 11–20. doi:10.1109/TIV.2021.3062730. S2CID 233804176.
  12. Knyazev, Andrew; Malyshev, Alexander (2016). "Sparse preconditioning for model predictive control". 2016 American Control Conference (ACC). pp. 4494–4499. arXiv:1512.00375. doi:10.1109/ACC.2016.7526060. ISBN 978-1-4673-8682-1. S2CID 2077492.
  13. M.R. García; C. Vilas; L.O. Santos; A.A. Alonso (2012). "A Robust Multi-Model Predictive Controller for Distributed Parameter Systems" (PDF). Journal of Process Control. 22 (1): 60–71. doi:10.1016/j.jprocont.2011.10.008.
  14. R. Kamyar; E. Taheri (2014). "Aircraft Optimal Terrain/Threat-Based Trajectory Planning and Control". Journal of Guidance, Control, and Dynamics. 37 (2): 466–483. Bibcode:2014JGCD...37..466K. doi:10.2514/1.61339.
  15. Bemporad, Alberto; Morari, Manfred; Dua, Vivek; Pistikopoulos, Efstratios N. (2002). "The explicit linear quadratic regulator for constrained systems". Automatica. 38 (1): 3–20. doi:10.1016/s0005-1098(01)00174-1.
  16. Knyazev, Andrew; Zhu, Peizhen; Di Cairano, Stefano (2015). "Explicit model predictive control accuracy analysis". 2015 54th IEEE Conference on Decision and Control (CDC). pp. 2389–2394. arXiv:1509.02840. Bibcode:2015arXiv150902840K. doi:10.1109/CDC.2015.7402565. ISBN 978-1-4799-7886-1. S2CID 6850073.
  17. Klaučo, Martin; Kalúz, Martin; Kvasnica, Michal (2017). "Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system". Control Engineering Practice. 60: 99–105. doi:10.1016/j.conengprac.2017.01.001.
  18. Scokaert, P.O.M.; Mayne, D.Q. (1998). "Min-max feedback model predictive control for constrained linear systems". IEEE Transactions on Automatic Control. 43 (8): 1136–1142. doi:10.1109/9.704989.
  19. Nevistić, Vesna; Morari, Manfred (1996-06-01). "Robustness of MPC-Based Schemes for Constrained Control of Nonlinear Systems". IFAC Proceedings Volumes (in English). 29 (1): 5823–5828. doi:10.1016/S1474-6670(17)58612-7. ISSN 1474-6670.
  20. Richards, A.; How, J. (2006). "Robust stable model predictive control with constraint tightening". Proceedings of the American Control Conference.
  21. Langson, W.; I. Chryssochoos; S.V. Rakovic; D.Q. Mayne (2004). "Robust model predictive control using tubes". Automatica. 40 (1): 125–133. doi:10.1016/j.automatica.2003.08.009.
  22. Lucia, Sergio; Finkler, Tiago; Engell, Sebastian (2013). "Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty". Journal of Process Control. 23 (9): 1306–1319. doi:10.1016/j.jprocont.2013.08.008.
  23. Lucia, S; Subramanian, S; Limon, D; Engell, S (2020). "Stability properties of multi-stage nonlinear model predictive control". Systems & Control Letters. 143 (9): 104743. doi:10.1016/j.sysconle.2020.104743. S2CID 225341650.
  24. Subramanian, S; Lucia, S; Paulen, R; Engell, S (2021). "Tube-enhanced multi-stage model predictive control for flexible robust control of constrained linear systems". International Journal of Robust and Nonlinear Control. 31 (9): 4458–4487. arXiv:2012.14848. doi:10.1002/rnc.5486. S2CID 234354708.
  25. Subramanian, S; Abdelsalam, Y; Lucia, S; Engell, S (2022). "Robust Tube-Enhanced Multi-Stage NMPC With Stability Guarantees". IEEE Control Systems Letters. 6: 1112–1117. doi:10.1109/LCSYS.2021.3089502. S2CID 235799791.


अग्रिम पठन

  • Kwon, W. H.; Bruckstein, Kailath (1983). "Stabilizing state feedback design via the moving horizon method". International Journal of Control. 37 (3): 631–643. doi:10.1080/00207178308932998.
  • Garcia, C; Prett, Morari (1989). "Model predictive control: theory and practice". Automatica. 25 (3): 335–348. doi:10.1016/0005-1098(89)90002-2.
  • Findeisen, Rolf; Allgower, Frank (2001). "An introduction to nonlinear model predictive control". Summerschool on "The Impact of Optimization in Control", Dutch Institute of Systems and Control. C.W. Scherer and J.M. Schumacher, Editors.: 3.1–3.45.
  • Mayne, D.Q.; Michalska, H. (1990). "Receding horizon control of nonlinear systems". IEEE Transactions on Automatic Control. 35 (7): 814–824. doi:10.1109/9.57020.
  • Mayne, D; Rawlings; Rao; Scokaert (2000). "Constrained model predictive control: stability and optimality". Automatica. 36 (6): 789–814. doi:10.1016/S0005-1098(99)00214-9.
  • Allgöwer; Zheng (2000). Nonlinear model predictive control. Progress in Systems Theory. Vol. 26. Birkhauser.
  • Camacho; Bordons (2004). Model predictive control. Springer Verlag.
  • Findeisen; Allgöwer, Biegler (2006). Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences. Vol. 26. Springer.
  • Diehl, M; Bock; Schlöder; Findeisen; Nagy; Allgöwer (2002). "Real-time optimization and Nonlinear Model Predictive Control of Processes governed by differential-algebraic equations". Journal of Process Control. 12 (4): 577–585. doi:10.1016/S0959-1524(01)00023-3.
  • James B. Rawlings, David Q. Mayne and Moritz M. Diehl: ”Model Predictive Control: Theory, Computation, and Design”(2nd Ed.), Nob Hill Publishing, LLC, ISBN 978-0975937730 (Oct. 2017).
  • Tobias Geyer: Model predictive control of high power converters and industrial drives, Wiley, London, ISBN 978-1-119-01090-6, Nov. 2016


बाहरी संबंध