फलन प्रतिनिधित्व
समारोह प्रतिनिधित्व (एफआरईपी[1] या एफ-रेप) का उपयोग ठोस मॉडलिंग, वॉल्यूम मॉडलिंग और कंप्यूटर चित्रलेख में किया जाता है। FRep को ज्यामितीय मॉडलिंग में फंक्शन प्रतिनिधित्व में पेश किया गया था: अवधारणाएँ, कार्यान्वयन और अनुप्रयोग [2] बहुआयामी ज्यामितीय वस्तुओं (आकृतियों) के एक समान प्रतिनिधित्व के रूप में। बहुआयामी अंतरिक्ष में एक बिंदु के रूप में एक वस्तु को एक निरंतर वास्तविक-मूल्यवान फ़ंक्शन द्वारा परिभाषित किया गया है बिंदु निर्देशांक जिसका मूल्यांकन दिए गए बिंदु पर पेड़ के नोड्स में पत्तियों और संचालन के साथ वृक्ष संरचना को पार करने की प्रक्रिया द्वारा किया जाता है। के साथ अंक वस्तु से संबंधित है, और अंक के साथ वस्तु के बाहर हैं। के साथ सेट किया गया बिंदु isosurface कहा जाता है।
ज्यामितीय डोमेन
3D अंतरिक्ष में FRep के ज्यामितीय डोमेन में फ़ंक्शन के शून्य मान द्वारा परिभाषित गैर-कई गुना मॉडल और निम्न-आयामी संस्थाओं (सतहों, वक्रों, बिंदुओं) के साथ ठोस शामिल हैं। एक प्रिमिटिव को एक समीकरण या एक ब्लैक बॉक्स प्रक्रिया द्वारा परिभाषित किया जा सकता है, जो बिंदु निर्देशांक को फ़ंक्शन मान में परिवर्तित करता है। बीजगणितीय सतहों, कंकाल-आधारित निहित सतहों, और कनवल्शन सतहों, साथ ही प्रक्रियात्मक वस्तुओं (जैसे ठोस शोर), और स्वर वस्तुओं से घिरे हुए ठोस पदार्थों को आदिम (निर्माण वृक्ष की पत्तियां) के रूप में इस्तेमाल किया जा सकता है। वोक्सल ऑब्जेक्ट (असतत क्षेत्र) के मामले में, इसे निरंतर वास्तविक कार्य में परिवर्तित किया जाना चाहिए, उदाहरण के लिए, ट्रिलिनियर या उच्च-क्रम प्रक्षेप को लागू करके।
सेट-सैद्धांतिक, सम्मिश्रण, ऑफसेटिंग, प्रक्षेपण, गैर-रैखिक विकृति, कायापलट, व्यापक, हाइपरटेक्स्चरिंग और अन्य जैसे कई संचालन इस प्रतिनिधित्व के लिए इस तरह से तैयार किए गए हैं कि वे आउटपुट के रूप में निरंतर वास्तविक-मूल्यवान कार्य करते हैं, इस प्रकार प्रतिनिधित्व की बंद संपत्ति की गारंटी। आर समारोह मूल रूप से वी.एल. में पेश किए गए थे। रवाचेव के कुछ ज्यामितीय वस्तुओं के विश्लेषणात्मक विवरण पर,[3] उपलब्ध करवाना सेट-सैद्धांतिक संचालन को परिभाषित करने वाले कार्यों के लिए चिकना कार्य (न्यूनतम/अधिकतम कार्य एक विशेष मामला है)। इस संपत्ति के कारण, किसी समर्थित ऑपरेशन के परिणाम को बाद के ऑपरेशन के लिए इनपुट के रूप में माना जा सकता है; इस प्रकार एक कार्यात्मक अभिव्यक्ति से इस तरह बहुत जटिल मॉडल बनाए जा सकते हैं। FRep मॉडलिंग विशेष उद्देश्य वाली भाषा HyperFun द्वारा समर्थित है।
आकृति मॉडल
FRep विभिन्न आकार के मॉडल को जोड़ता है और सामान्य करता है जैसे
- बीजगणितीय सतहें
- कंकाल आधारित अंतर्निहित सतहें
- सेट-सैद्धांतिक ठोस या सीएसजी (रचनात्मक ठोस ज्यामिति)
- झाडू
- वॉल्यूमेट्रिक ऑब्जेक्ट्स
- पैरामीट्रिक मॉडल
- प्रक्रियात्मक मॉडल
एक अधिक सामान्य रचनात्मक हाइपरवॉल्यूम[4] विशेषताओं के साथ बहुआयामी बिंदु सेट मॉडलिंग के लिए अनुमति देता है (3डी केस में वॉल्यूम मॉडल)। बिंदु सेट ज्यामिति और विशेषताओं का स्वतंत्र प्रतिनिधित्व होता है लेकिन समान रूप से व्यवहार किया जाता है। एक मनमाना आयाम के एक ज्यामितीय स्थान में सेट एक वास्तविक वस्तु का एक FRep आधारित ज्यामितीय मॉडल है। एक विशेषता जो एक वास्तविक-मूल्यवान फ़ंक्शन (जरूरी नहीं कि निरंतर) द्वारा भी प्रस्तुत की जाती है, एक मनमाना प्रकृति (सामग्री, फोटोमेट्रिक, भौतिक, चिकित्सा, आदि) की वस्तु संपत्ति का एक गणितीय मॉडल है। विषम वस्तुओं के सेलुलर-कार्यात्मक मॉडलिंग में प्रस्तावित अंतर्निहित परिसर की अवधारणा[5] एक विषम वस्तु के एकल सेलुलर-कार्यात्मक मॉडल में बहुभुज, पैरामीट्रिक और FRep घटकों को जोड़कर विभिन्न आयामों के ज्यामितीय तत्वों को शामिल करने के लिए एक ढांचा प्रदान करता है।
यह भी देखें
- सीमा प्रतिनिधित्व
- रचनात्मक ठोस ज्यामिति
- ठोस मॉडलिंग
- आइसोसफेस
- हस्ताक्षरित दूरी समारोह
- हाइपरफन
- डिजिटल भौतिककरण
संदर्भ
- ↑ Shape Modeling and Computer Graphics with Real Functions, FRep Home Page
- ↑ A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.
- ↑ V.L. Rvachev, "On the analytical description of some geometric objects", Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765-767 (in Russian).
- ↑ A. Pasko, V. Adzhiev, B. Schmitt, C. Schlick, "Constructive hypervolume modelling", Graphical Models, 63(6), 2001, pp. 413-442.
- ↑ V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, B. Schmitt, "Cellular-functional modeling of heterogeneous objects", Proc. 7th ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, ACM Press, 2002, pp. 192-203. 3-540-65620-0