आयरन (तृतीय)
रसायन विज्ञान में, लोहा (III) रासायनिक तत्व लोहे को उसके +3 ऑक्सीकरण संख्या में संदर्भित करता है। नमक (रसायन विज्ञान) (लवण) में, ऐसा परमाणु Fe द्वारा निरूपित एक अलग धनायन (सकारात्मक आयन) के रूप में हो सकता है3+.
विशेषण फेरिक या उपसर्ग फेरी- का प्रयोग अक्सर ऐसे यौगिकों को निर्दिष्ट करने के लिए किया जाता है - जैसे आयरन (III) क्लोराइड के लिए फेरिक क्लोराइड में, FeCl3. आयरन (II) लवण के बजाय विशेषण लौह का उपयोग किया जाता है, जिसमें धनायन Fe होता है2+. फेरिक शब्द की उत्पत्ति लैटिन शब्द फेरम से हुई है जिसका अर्थ लोहा होता है।
आयरन (III) धातु केंद्र समन्वय परिसरों में भी होते हैं, जैसे कि आयनों फेरिओक्सालेट में, [Fe(C2O4)3]3−, जहां धातु केंद्र के चारों ओर तीन bidentate ऑक्सालेट आयन; या, ऑर्गोनोमेटेलिक यौगिकों में, जैसे कि फेरोसेनियम केशन [Fe(C2H5)2]+, जहां दो cyclopentadienyl आयन Fe से बंधे हैंIII केंद्र।
लोहा लगभग हमेशा ऑक्सीकरण अवस्था 0 (धातु के रूप में), +2, या +3 में पाया जाता है। लोहा (III) आमतौर पर हवा में सबसे स्थिर रूप है, जैसा कि जंग की व्यापकता, एक अघुलनशील लोहा (III) -युक्त सामग्री द्वारा चित्रित किया गया है।
लोहा (III) और जीवन
जीवन के लगभग सभी ज्ञात रूपों, विशेष रूप से जटिल जीवन में आयरन की आवश्यकता होती है।[1] जीवित प्राणियों में कई प्रोटीनों में बाउंड आयरन (III) आयन होते हैं; वे मेटालोप्रोटीन के एक महत्वपूर्ण उपवर्ग हैं। उदाहरणों में आक्सीहीमोग्लोबिन, फेरेडॉक्सिन और साइटोक्रोमेस शामिल हैं।
लगभग सभी जीवित जीव, बैक्टीरिया से लेकर मनुष्यों तक, लौह (IIIआयरन (III) ऑक्साइड हाइड्रॉक्साइड के सूक्ष्म क्रिस्टल (व्यास में 3 से 8 एनएम) के रूप में लोहे को प्रोटीन ferritin के एक खोल के अंदर जमा करते हैं, जिससे इसे आवश्यकतानुसार पुनर्प्राप्त किया जा सकता है। [2] मानव आहार में अपर्याप्त आयरन रक्ताल्पता का कारण बनता है। पशु और मनुष्य आवश्यक आयरन उन खाद्य पदार्थों से प्राप्त कर सकते हैं जिनमें यह आत्मसात करने योग्य रूप में होता है, जैसे कि मांस। अन्य जीवों को अपना लोहा पर्यावरण से प्राप्त करना चाहिए। हालांकि, आयरन एरोबिक (ऑक्सीजन युक्त) वातावरण में अत्यधिक अघुलनशील आयरन (III) ऑक्साइड/हाइड्रॉक्साइड बनाने की प्रवृत्ति रखता है, विशेष रूप से चूने वाली मिट्टी में। साइडरोफोरस नामक यौगिकों को स्रावित करके बैक्टीरिया और ग्रामिनसेई ऐसे वातावरण में पनप सकते हैं जो लोहे (III) के साथ घुलनशील परिसरों का निर्माण करते हैं, जिन्हें कोशिका में पुन: अवशोषित किया जा सकता है। (इसके बजाय अन्य पौधे कुछ जीवाणुओं की जड़ों के आसपास विकास को प्रोत्साहित करते हैं जो आयरन (III) को अधिक घुलनशील आयरन (II) में रिडॉक्स करते हैं।)[3] समुद्री जल में लोहे के निम्न स्तर के लिए अघुलनशील आयरन (III) यौगिकों का निर्माण भी जिम्मेदार है, जो अक्सर सूक्ष्म पौधों (पादप प्लवक) के विकास के लिए सीमित कारक होता है जो समुद्री खाद्य वेब का आधार होते हैं।[4]
फार्म अपवाह से अतिरिक्त घुलनशील फास्फेट द्वारा दूषित झीलों में eutrophication (शैवाल की अत्यधिक वृद्धि) को दूर करने के लिए आयरन (III) यौगिकों की अघुलनशीलता का उपयोग किया जा सकता है। आयरन (III) फॉस्फेट के साथ मिलकर अघुलनशील आयरन (III) फॉस्फेट बनाता है, इस प्रकार फास्फोरस की जैवउपलब्धता को कम करता है - एक अन्य आवश्यक तत्व जो एक सीमित पोषक तत्व भी हो सकता है।[citation needed]
लोहे का रसायन (III)
आयरन (III) क्लोराइड जैसे कुछ लौह (III) लवण FeCl3, लोहा (III) सल्फेट Fe2(SO4)3, और आयरन (III) नाइट्रेट Fe(NO3)3 पानी में घुलनशील हैं। हालाँकि, अन्य यौगिक जैसे आयरन (III) ऑक्साइड Fe2O3 (हेमेटाइट) और आयरन (IIIलोहा (III) ऑक्साइड-हाइड्रॉक्साइड FeO(OH) अत्यंत अघुलनशील हैं, कम से कम तटस्थ पीएच पर, उनकी बहुलक संरचना के कारण। इसलिए, उन घुलनशील आयरन (III) लवणों का हाइड्रोलिसिस तब होता है जब शुद्ध पानी में घुल जाता है, जिससे आयरन (III) हाइड्रॉक्साइड बनता है Fe(OH)3 यह तुरंत जयजयकार नामक प्रक्रिया के माध्यम से पॉलीमेरिक ऑक्साइड-हाइड्रॉक्साइड में परिवर्तित हो जाता है और घोल से बाहर निकल जाता है। वह प्रतिक्रिया हाइड्रोजन आयनों को मुक्त करती है H+ समाधान के लिए, पीएच को कम करना, जब तक कि एक रासायनिक संतुलन नहीं हो जाता।[5]
- Fe3+ + 2 H2O ⇌ FeO(OH) + 3 H+
नतीजतन, लौह (III) लवण के केंद्रित समाधान काफी अम्लीय होते हैं। आयरन (III) को आयरन (II) में आसानी से कम करने से आयरन (III) लवण भी ऑक्सीकारक के रूप में कार्य करता है। मुद्रित सर्किट बोर्डों के उत्पादन में ताँबा-लेपित प्लास्टिक शीट्स को खोदने के लिए आयरन (III) क्लोराइड समाधान का उपयोग किया जाता है।[citation needed] लौह (III) लवणों का यह व्यवहार उन धनायनों के लवणों के विपरीत है जिनके हाइड्रॉक्साइड अधिक घुलनशील होते हैं, जैसे सोडियम क्लोराइड NaCl (टेबल सॉल्ट), जो ध्यान देने योग्य हाइड्रोलिसिस के बिना और पीएच को कम किए बिना पानी में घुल जाता है।[5] जंग आयरन (III) ऑक्साइड और ऑक्साइड-हाइड्रॉक्साइड का मिश्रण है जो आमतौर पर तब बनता है जब लोहे की धातु नमी वाली हवा के संपर्क में आती है। पैसिवेशन (रसायन विज्ञान) ऑक्साइड परतों के विपरीत, जो क्रोमियम और अल्युमीनियम जैसी अन्य धातुओं द्वारा बनाई जाती हैं, जंग निकल जाती है, क्योंकि यह उस धातु की तुलना में भारी होती है जिसने इसे बनाया था। इसलिए, असुरक्षित लोहे की वस्तुएं समय के साथ पूरी तरह से जंग में बदल जाएंगी।
कॉम्प्लेक्स
आयरन (III) एक डी है5 केंद्र, जिसका अर्थ है कि धातु के 3डी कक्षीय खोल में पांच संयोजी इलेक्ट्रॉन हैं। ये आंशिक रूप से भरे या भरे नहीं गए डी-ऑर्बिटल्स समन्वय परिसरों के निर्माण के लिए बड़ी संख्या में लिगैंड्स को स्वीकार कर सकते हैं। लिगैंड क्षेत्र सिद्धांत द्वारा लिगेंड की संख्या और प्रकार का वर्णन किया गया है। आमतौर पर फेरिक आयन ऑक्टाहेड्रल आणविक ज्यामिति में व्यवस्थित छह लिगेंड से घिरे होते हैं; लेकिन कभी-कभी तीन और कभी-कभी सात लिगेंड देखे जाते हैं। विभिन्न केलेशन यौगिकों के कारण आयरन ऑक्साइड-हाइड्रॉक्साइड (जंग की तरह) तटस्थ पीएच पर भी घुलने लगता है, जिससे आयरन (III) आयन के साथ घुलनशील कॉम्प्लेक्स बन जाते हैं जो इससे अधिक स्थिर होते हैं। इन लिगेंड्स में EDTA शामिल है, जिसका उपयोग अक्सर लोहे के जमाव को भंग करने के लिए किया जाता है या पौधों को उपलब्ध मिट्टी में लोहे को बनाने के लिए उर्वरकों में जोड़ा जाता है। सिट्रट भी तटस्थ पीएच पर फेरिक आयन को घुलनशील करता है, हालांकि इसके परिसर ईडीटीए की तुलना में कम स्थिर हैं।
चुंबकत्व
फेरिक यौगिकों का चुंबकत्व मुख्य रूप से पांच डी-इलेक्ट्रॉनों और उन लिगेंडों द्वारा निर्धारित किया जाता है जो उन ऑर्बिटल्स से जुड़ते हैं।
विश्लेषण
गुणात्मक अकार्बनिक विश्लेषण में, फेरिक आयन की उपस्थिति को उसके thiocyanate कॉम्प्लेक्स के गठन से पता लगाया जा सकता है। विलयन में थायोसायनेट लवण मिलाने से तीव्र लाल 1:1 संकुल प्राप्त होता है।[6][7] प्रतिक्रिया ले चेटेलियर के सिद्धांत को प्रदर्शित करने के लिए एक क्लासिक स्कूल प्रयोग है:
- [Fe(H2O)6]3+ + SCN− ⇌ [Fe(SCN)(H2O)5]2+ + H2O
यह भी देखें
- Ferric chloride (लौह (III) क्लोराइड)
- Ferric oxide (आयरन (III) ऑक्साइड)
- Ferric fluoride (लौह (III) फ्लोराइड)
- Ferrous
संदर्भ
- ↑ "Iron integral to the development of life on Earth – and the possibility of life on other planets". University of Oxford. 7 December 2021. Retrieved 9 May 2022.
- ↑ Berg, Jeremy Mark; Lippard, Stephen J. (1994). Principles of bioinorganic chemistry. Sausalito, Calif: University Science Books. ISBN 0-935702-73-3.
- ↑ H. Marschner and V. Römheld (1994): "Strategies of plants for acquisition of iron". Plant and Soil, volume 165, issue 2, pages 261–274. doi:10.1007/BF00008069
- ↑ Boyd PW, Watson AJ, Law CS, et al. (October 2000). "A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization". Nature. 407 (6805): 695–702. Bibcode:2000Natur.407..695B. doi:10.1038/35037500. PMID 11048709. S2CID 4368261.
- ↑ 5.0 5.1 Earnshaw, A.; Greenwood, N. N. (1997). Chemistry of the elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
- ↑ Lewin, Seymour A.; Wagner, Roselin Seider (1953). "The nature of iron(III) thiocyanate in solution". Journal of Chemical Education. 30 (9): 445. Bibcode:1953JChEd..30..445L. doi:10.1021/ed030p445.
- ↑ Bent, H. E.; French, C. L. (1941). "The Structure of Ferric Thiocyanate and its Dissociation in Aqueous Solution". Journal of the American Chemical Society. 63 (2): 568–572. doi:10.1021/ja01847a059.