लाप्लास विस्तार (संभावित)

From Vigyanwiki

भौतिकी में, क्षमता का लाप्लास विस्तार जो दूरी के व्युत्क्रमानुपाती () होता है, जैसे कि न्यूटन का गुरुत्वीय विभव या कूलम्ब का विद्युतस्थैतिक विभव, उन्हें गोलीय लीजेंड्रे बहुपदों के रूप में अभिव्यक्त करता है। परमाणुओं पर क्वांटम यांत्रिक गणना में अंतर-इलेक्ट्रॉनिक प्रतिकर्षण के अभिन्न के मूल्यांकन में विस्तार का उपयोग किया जाता है।

लाप्लास विस्तार वास्तव में दो बिंदुओं के बीच की व्युत्क्रम दूरी का विस्तार है। बता दें कि बिंदुओं में स्थिति वैक्टर हैं और , तो लाप्लास विस्तार है

यहाँ गोलाकार ध्रुवीय निर्देशांक और है घात के सजातीय बहुपदों के साथ है। इसके अलावा r< न्यूनतम (r, r′) और r> अधिकतम (r, r′) है। फलन एक सामान्यीकृत गोलाकार हार्मोनिक्स फलन है। विस्तार सरल रूप लेता है जब ठोस हार्मोनिक्स के संदर्भ में लिखा जाता है,


व्युत्पत्ति

इस विस्तार की व्युत्पत्ति सरल है। कोसाइन के नियम से,

हम यहां लेजेंड्रे बहुपदों का जनरेटिंग फलन पाते हैं, भौतिक में लेजेंड्रे बहुपदों के अनुप्रयोग है:

गोलाकार हार्मोनिक एडिशन प्रमेय का उपयोग

वांछित परिणाम देता है।

न्यूमैन विस्तार

इसी तरह का समीकरण न्यूमैन व्युत्पन्न किया गया है,[1]</nowiki> जो की अभिव्यक्ति प्रोलेट गोलाकार निर्देशांक में एक श्रृंखला के रूप में अनुमति देता है:

जब कि और क्रमशः पहले और दूसरे प्रकार के लीजेंड्रे फलन जुड़े हुए हैं, जिन्हें इस तरह परिभाषित किया गया है कि वे वास्तविक हैं। उपरोक्त गोलाकार समन्वय स्थितियो के अनुरूप, रेडियल निर्देशांक के सापेक्ष आकार महत्वपूर्ण हैं, जैसे और .

संदर्भ

  1. Rüdenberg, Klaus (1951). "A Study of Two‐Center Integrals Useful in Calculations on Molecular Structure. II. The Two‐Center Exchange Integrals". The Journal of Chemical Physics. AIP Publishing. 19 (12): 1459–1477. Bibcode:1951JChPh..19.1459R. doi:10.1063/1.1748101. ISSN 0021-9606.
  • Griffiths, David J. (David Jeffery). Introduction to Electrodynamics. Englewood Cliffs, N.J.: Prentice-Hall, 1981.