डेल्टा ऑपरेटर

From Vigyanwiki
Revision as of 07:38, 19 March 2023 by Indicwiki (talk | contribs) (3 revisions imported from alpha:डेल्टा_ऑपरेटर)

गणित में, डेल्टा संकारक एक विस्थापन-समतुल्य रैखिक संक्रियक पर क्षेत्र (गणित) चर में बहुपदो के वेक्टर समष्टि पर होता है जो बहुपद की घात को एक से कम कर देता है।

यह कहने के लिए विस्थापन-समतुल्य है इसका तात्पर्य है कि यदि , तब

दूसरे शब्दों में, यदि , का विस्थापन है तब भी का विस्थापन है, और समान विस्थापन वेक्टर है।

यह कहना कि संक्रियक कोटि को एक से कम कर देता है, जिसका अर्थ है कि यदि कोटि का बहुपद है, तब या तो कोटि का बहुपद है या, स्थिति में , तब , 0 है।

कभी-कभी डेल्टा संकारक को बहुपदों पर एक विस्थापन-समतुल्य रैखिक परिवर्तन के रूप में परिभाषित किया जाता है जो को को एक गैर-स्थिर स्थिरांक पर प्रतिचित्र करता है। ऊपर दी गई परिभाषा की तुलना में दुर्बल लगता है, यह बाद की विशेषता को बताई गई परिभाषा के बराबर दिखाया जा सकता है जब मे विशेषता (बीजगणित) शून्य है, क्योंकि विस्थापन-समतुल्यता एक अपेक्षाकृत अधिक प्रबल स्थिति है।

उदाहरण

एक डेल्टा संकारक है।
  • x के संबंध में अवकलन, जिसे D के रूप में लिखा गया है, यह भी डेल्टा संकारक है।
  • व्यंजक का कोई भी संक्रियक
(जहां Dn(ƒ) = ƒ(n) nवाँ अवकलज है) के साथ एक डेल्टा संकारक है। यह दिखाया जा सकता है कि सभी डेल्टा संकारकों को इस रूप में लिखा जा सकता है। उदाहरण के लिए, ऊपर दिए गए अंतर संक्रियक का विस्तार किया जा सकता है
  • समय मापक्रम की गणना का सामान्यीकृत अवकलज जो मानक गणना के यौगिक पद के साथ अग्रांतर संक्रियक को एकीकृत करता है, जो डेल्टा ऑपरेटर है।
  • कंप्यूटर विज्ञान औरसूचना प्रभाविकी में, ''विविक्‍त-समय डेल्टा संकारक'' (δ) पद को सामान्य रूप से अंतर संक्रियक के रूप में लिया जाता है।
असतत प्रतिदर्श समय के साथ सामान्य अवकलज का यूलर सन्निकटन तेजी से प्रतिदर्श लेने पर विस्थापन-संक्रियक की तुलना में डेल्टा-सूत्रीकरण महत्वपूर्ण संख्या में संख्यात्मक लाभ प्राप्त करता है।

मूल बहुपद

हर डेल्टा संकारक मूल बहुपदों का एक अद्वितीय अनुक्रम है, बहुपद अनुक्रम तीन शर्तों द्वारा परिभाषित किया गया है:

मूल बहुपदों का ऐसा क्रम सदैव द्विपद प्रकार का होता है, और यह दिखाया जा सकता है कि द्विपद प्रकार के कोई अन्य क्रम सम्मिलित नहीं हैं। यदि उपरोक्त पहली दो शर्तों को छोड़ दिया जाता है, तो तीसरी शर्त कहती है कि यह बहुपद अनुक्रम एक शेफ़र अनुक्रम है जो एक अधिक सामान्य अवधारणा है।

यह भी देखें

संदर्भ

  • Nikol'Skii, Nikolai Kapitonovich (1986), Treatise on the shift operator: spectral function theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-15021-5


बाहरी संबंध