शंक्वाकार सतह
ज्यामिति में, (सामान्य) शंक्वाकार सतह असीमित सतह (गणित) है जो सभी सीधी रेखा (गणित) के मिलन से बनती है जो निश्चित बिंदु से होकर गुजरती है - शीर्ष या शीर्ष - और कोई भी कुछ निश्चित स्थान वक्र का बिंदु - निर्देशिका जिसमें शीर्ष नहीं होता है। उन पंक्तियों में से प्रत्येक को सतह का जेनरेट्रिक्स कहा जाता है।
प्रत्येक शंक्वाकार सतह शासित सतह और विकास योग्य सतह होती है। सामान्यतः, शंक्वाकार सतह में दो सर्वांगसम असंबद्ध आधे भाग होते हैं जो शीर्ष से जुड़ते हैं। प्रत्येक आधे को नपे कहा जाता है, और सभी रेखा (गणित) किरणों का मिलन होता है जो शीर्ष पर प्रारंभ होती हैं और कुछ निश्चित स्थान वक्र के बिंदु से गुजरती हैं। (कुछ स्थितियों में, चुकीं, दो आवरण एक-दूसरे को काट सकते हैं, या पूरी सतह के साथ मेल भी खा सकते हैं।) कभी-कभी शंक्वाकार सतह शब्द का अर्थ केवल आवरण होता है।
यदि नियता वृत्त है , और शीर्ष वृत्त के अक्ष पर स्थित है (वह रेखा जिसमें केंद्र है और इसके तल के लंबवत है), सही गोलाकार शंक्वाकार सतह प्राप्त करता है। इस विशेष स्थितियों को अधिकांशतः शंकु (ज्यामिति) कहा जाता है, क्योंकि यह दो अलग-अलग सतहों में से एक है जो उस नाम के ज्यामितीय ठोस को बांधता है। इस ज्यामितीय वस्तु को रेखा द्वारा बहने वाले सभी बिंदुओं के समुच्चय के रूप में भी वर्णित किया जा सकता है जो अक्ष और उसके चारों ओर घुमाव को रोकता है; या उन सभी रेखाओं का मिलन जो अक्ष को निश्चित बिंदु पर प्रतिच्छेद करती हैं और निश्चित कोण .पर . शंकु का छिद्र कोण है। .
अधिक सामान्यतः, जब डायरेक्ट्रिक्स दीर्घवृत्त, या कोई शंक्वाकार खंड है, और शीर्ष मनमाना बिंदु है जो के तल पर नहीं है , अण्डाकार शंकु या शंक्वाकार चतुर्भुज प्राप्त करता है, जो द्विघात की विशेष स्थितियों में है।
बेलनाकार सतह को शंक्वाकार सतह के सीमित स्थितियों (गणित) के रूप में देखा जा सकता है जिसका शीर्ष विशेष दिशा में अनंत तक चला जाता है। वास्तव में, प्रक्षेपी ज्यामिति में बेलनाकार सतह शंक्वाकार सतह की विशेष स्थितियां है।
समीकरण
शंक्वाकार सतह पैरामीट्रिजेशन (ज्यामिति) के रूप में वर्णित किया जा सकता है
- ,
कहाँ शीर्ष है और निर्देशक है।
एपर्चर की सही गोलाकार शंक्वाकार सतह , जिसकी धुरी है समन्वय अक्ष, और जिसका शीर्ष मूल है, इसे पैरामीट्रिक रूप से वर्णित किया गया है
कहाँ और सीमा से अधिक और , क्रमश अन्तर्निहित समीकरण रूप में, उसी सतह का वर्णन किसके द्वारा किया जाता है जहाँ
अधिक सामान्यतः, मूल में शीर्ष के साथ सही गोलाकार शंक्वाकार सतह, वेक्टर के समानांतर अक्ष , और एपर्चर , निहित सदिश कलन समीकरण द्वारा दिया जाता है जहाँ
या
कहाँ , और डॉट उत्पाद को दर्शाता है।
तीन निर्देशांकों में, x, y और z, अण्डाकार डायरेक्ट्रिक्स के साथ शंक्वाकार सतह, मूल में शीर्ष के साथ, डिग्री 2 के इस सजातीय समीकरण द्वारा दिया गया है।
यह भी देखें
- शंक्वाकार खंड
- विकास योग्य सतह
- क्वाड्रिक
- शासित सतह
श्रेणी:यूक्लिडियन ठोस ज्यामिति
श्रेणी:सतह
श्रेणी:बीजगणितीय सतहें
श्रेणी:क्वाड्रिक्स