अनिवार्य विलक्षणता

From Vigyanwiki
Revision as of 05:30, 17 March 2023 by alpha>Shikhav
फलन का प्लॉट exp(1/z), पर आवश्यक विलक्षणता पर केंद्रित है z = 0. रंग आर्ग (गणित) का प्रतिनिधित्व करता है, चमक निरपेक्ष मूल्य का प्रतिनिधित्व करता है। यह कथानक दिखाता है कि अलग-अलग दिशाओं से आवश्यक विलक्षणता के करीब आने से अलग-अलग व्यवहार उत्पन्न होते हैं (जैसा कि एक ध्रुव के विपरीत, जो किसी भी दिशा से संपर्क करता है, समान रूप से सफेद होगा)।

जटिल विश्लेषण में, एक फलन (गणित) की एक आवश्यक विलक्षणता एक गंभीर विलक्षणता (गणित) है जिसके पास फलन विषम व्यवहार प्रदर्शित करता है।

श्रेणी अनिवार्य विलक्षणता पृथक विलक्षणता का एक बचा हुआ या डिफ़ॉल्ट समूह है जो विशेष रूप से अप्रबंधनीय है: परिभाषा के अनुसार वे विलक्षणता की अन्य दो श्रेणियों में से किसी में भी फिट नहीं होते हैं जिन्हें किसी प्रकार से हटाने योग्य विलक्षणताओ और ध्रुवों (जटिल विश्लेषण) का समाधान किया जा सकता है। व्यवहार में कुछ[who?] गैर-पृथक विलक्षणताओं को भी शामिल करते हैं; जिनका कोई अवशेष (जटिल विश्लेषण) नहीं होता है।

औपचारिक विवरण

जटिल तल के एक खुले उपसमुच्चय पर विचार करें। मान लीजिए का एक अवयव है और एक होलोमॉर्फिक फलन हैं। बिंदु फलन की एक आवश्यक विलक्षणता कहा जाता है यदि विलक्षणता न तो ध्रुव (जटिल विश्लेषण) है और न ही हटाने योग्य विलक्षणता है।

उदाहरण के लिए, फलन की पर एक आवश्यक विलक्षणता है।

वैकल्पिक विवरण

को एक जटिल संख्या होने दें, मान लें कि को पर परिभाषित नहीं किया गया है, लेकिन जटिल तल के कुछ क्षेत्र में विश्लेषणात्मक फलन है, और के प्रत्येक खुले सेट पड़ोस (गणित) में के साथ गैर-रिक्त चौराहा है।

यदि दोनों और अस्तित्व हैं, तो , और दोनों की एक हटाने योग्य विलक्षणता है।
यदि का अस्तित्व है लेकिन का अस्तित्व (वास्तव में ) नहीं है, तब का एक शून्य (जटिल विश्लेषण) है और एक ध्रुव (जटिल विश्लेषण) है।
इसी प्रकार, यदि का अस्तित्व (वास्तव में ) नही है, लेकिन का अस्तित्व है, तो का ध्रुव है और एक शून्य है।
यदि नहीं और न अस्तित्व है, तो और दोनों की एक आवश्यक विलक्षणता है।

एक आवश्यक विलक्षणता को चित्रित करने का एक और विधि यह है कि बिंदु पर की लॉरेंट श्रृंखला में अपरिमित रूप से कई ऋणात्मक घात वाले पद (अर्थात् लॉरेंट श्रेणी का मुख्य भाग एक अनंत योग है) हैं। एक संबंधित परिभाषा यह है कि यदि कोई बिंदु है जिसके लिए का कोई व्युत्पन्न एक सीमा तक अभिसरण नहीं करता है जैसे की ओर जाता है, तो की एक आवश्यक विलक्षणता है।[1]

अनंत पर एक बिंदु के साथ रीमैन क्षेत्र पर, , फलन उस बिंदु पर एक आवश्यक विलक्षणता है यदि और केवल यदि 0 पर एक आवश्यक विलक्षणता है: यानी न तो और न उपस्थित हैं।[2] रीमैन क्षेत्र पर रीमैन जीटा फलन में पर केवल एक आवश्यक विलक्षणता है।[3]

होलोमॉर्फिक कार्यों का व्यवहार उनकी आवश्यक विलक्षणताओं के पास कैसोराती-वीयरस्ट्रैस प्रमेय और काफी मजबूत पिकार्ड के महान प्रमेय द्वारा वर्णित है। उत्तरार्द्ध का कहना है कि एक आवश्यक विलक्षणता के हर पड़ोस में , फलन संभवतः एक को छोड़कर, असीमित रूप से कई बार प्रत्येक जटिल मान लेता है। (अपवाद आवश्यक है; उदाहरण के लिए, function कभी भी मान 0 नहीं लेता है।)

संदर्भ

  1. Weisstein, Eric W. "आवश्यक विलक्षणता". MathWorld. Wolfram. Retrieved 11 February 2014.
  2. "एक पृथक विलक्षणता के रूप में अनंत" (PDF). Retrieved 2022-01-06.{{cite web}}: CS1 maint: url-status (link)
  3. Steuding, Jörn; Suriajaya, Ade Irma (2020-11-01). "रीमैन जीटा-फ़ंक्शन का मूल्य-वितरण इसके जूलिया लाइन्स के साथ". Computational Methods and Function Theory (in English). 20 (3): 389–401. doi:10.1007/s40315-020-00316-x. ISSN 2195-3724.
  • Lars V. Ahlfors; Complex Analysis, McGraw-Hill, 1979
  • Rajendra Kumar Jain, S. R. K. Iyengar; Advanced Engineering Mathematics. Page 920. Alpha Science International, Limited, 2004. ISBN 1-84265-185-4


बाहरी संबंध