एपिपोलर ज्यामिति

From Vigyanwiki
Revision as of 15:35, 17 March 2023 by alpha>Indicwiki (Created page with "{{short description|Geometry of stereo vision}} {{broader|Computer stereo vision}} File:Aufnahme mit zwei Kameras.svg|thumb |right|250px|एपिपोलर ज्यो...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
एपिपोलर ज्योमेट्री के लिए विशिष्ट उपयोग मामला
Two cameras take a picture of the same scene from different points of view. The epipolar geometry then describes the relation between the two resulting views.

एपिपोलर ज्योमेट्री स्टीरियो विजन # कंप्यूटर स्टीरियो विजन की ज्योमेट्री है। जब दो कैमरे दो अलग-अलग स्थितियों से एक 3डी दृश्य देखते हैं, तो 3डी बिंदुओं और 2डी छवियों पर उनके अनुमानों के बीच कई ज्यामितीय संबंध होते हैं जो छवि बिंदुओं के बीच बाधाओं का कारण बनते हैं। ये संबंध इस धारणा के आधार पर निकाले गए हैं कि कैमरों को पिनहोल कैमरा मॉडल द्वारा अनुमानित किया जा सकता है।

परिभाषाएँ

  1. Epipolar बाधा और त्रिकोणासन दो पिनहोल कैमरों को बिंदु X पर देखते हुए दर्शाता है। वास्तविक कैमरों में, छवि तल वास्तव में फोकल केंद्र के पीछे होता है, और एक ऐसी छवि बनाता है जो लेंस के फोकल केंद्र के बारे में सममित होती है। यहाँ, हालाँकि, समरूपता द्वारा परिवर्तित नहीं की गई छवि का निर्माण करने के लिए फोकल सेंटर यानी प्रत्येक कैमरा लेंस के ऑप्टिकल केंद्र के सामने एक 'वर्चुअल इमेज प्लेन' रखकर समस्या को सरल बनाया गया है। हेL और ओR दो कैमरों के लेंसों के समरूपता के केंद्रों का प्रतिनिधित्व करते हैं। X दोनों कैमरों में रुचि के बिंदु का प्रतिनिधित्व करता है। अंक एक्सL और एक्सR छवि विमानों पर बिंदु X के अनुमान हैं।
एपिपोलर ज्यामिति

प्रत्येक कैमरा 3D दुनिया की 2D छवि कैप्चर करता है। 3डी से 2डी में इस रूपांतरण को परिप्रेक्ष्य प्रक्षेपण के रूप में संदर्भित किया जाता है और इसे पिनहोल कैमरा मॉडल द्वारा वर्णित किया जाता है। इस प्रोजेक्शन ऑपरेशन को कैमरे से निकलने वाली किरणों द्वारा, इसके फोकल सेंटर से गुजरते हुए मॉडल करना आम है। प्रत्येक निकलने वाली किरण छवि में एक बिंदु से मेल खाती है।

एपिपोल या एपिपोलर पॉइंट

चूंकि कैमरों के लेंस के ऑप्टिकल केंद्र अलग-अलग होते हैं, इसलिए प्रत्येक केंद्र दूसरे कैमरे के छवि तल में एक अलग बिंदु पर प्रोजेक्ट करता है। इन दो छवि बिंदुओं को ई द्वारा दर्शाया गया हैL और ईR, एरी कॉलिट एपिपोलरिस या एपिपोलर पॉइंट। सतही वासना 'एन'L और ईR उनके संबंधित छवियों के विमानों और दोनों ऑप्टिकल केंद्र ओ मेंL और ओR एक 3डी लाइन पर लेट जाएं।

बिट ध्रुवीय

ओह लिटिल ओL–X को बाएं कैमरे द्वारा एक बिंदु के रूप में देखा जाता है क्योंकि यह सीधे उस कैमरे के लेंस ऑप्टिकल केंद्र के अनुरूप होता है। हालाँकि, दायाँ कैमरा इस रेखा को अपने छवि तल में एक रेखा के रूप में देखता है। वह रेखा (ईR-एक्सR) दाहिने कैमरे में एक एपिपोलर लाइन कहा जाता है। सममित रूप से, रेखा 'ओ'R–X को दाहिने कैमरे द्वारा एक बिंदु के रूप में देखा जाता है और इसे एपिपोलर लाइन e के रूप में देखा जाता हैL-एक्सLबाएं कैमरे द्वारा।

एक एपिपोलर लाइन 3डी स्पेस में बिंदु एक्स की स्थिति का एक कार्य है, यानी जैसे एक्स बदलता है, दोनों छवियों में एपिपोलर लाइनों का एक सेट उत्पन्न होता है। 3डी लाइन के बाद से हेL-X लेंस O के ऑप्टिकल केंद्र से होकर गुजरता हैL, सही छवि में संबंधित एपिपोलर लाइन एपिपोल ई से होकर गुजरनी चाहिएR (और तदनुसार बाईं छवि में एपिपोलर लाइनों के लिए)। एक छवि में सभी एपिपोलर लाइन्स में उस इमेज का एपिपोलर पॉइंट होता है। वास्तव में, कोई भी रेखा जिसमें अधिध्रुवीय बिंदु होता है, एक अधिध्रुवीय रेखा होती है क्योंकि इसे किसी 3D बिंदु X से प्राप्त किया जा सकता है।

एपिपोलर प्लेन

एक वैकल्पिक विज़ुअलाइज़ेशन के रूप में, बिंदुओं X, O पर विचार करेंL और ओR जो एक तल बनाती है जिसे अधिध्रुवीय तल कहते हैं। एपिपोलर प्लेन प्रत्येक कैमरे के इमेज प्लेन को काटता है जहाँ यह रेखाएँ बनाता है - एपिपोलर लाइन्स। सभी एपिपोलर प्लेन और एपिपोलर लाइनें एपिपोल को काटती हैं, भले ही 'X' स्थित हो।

एपिपोलर बाधा और त्रिभुज

यदि दो कैमरों की सापेक्ष स्थिति ज्ञात है, तो इससे दो महत्वपूर्ण प्रेक्षण प्राप्त होते हैं:

  • प्रक्षेपण बिंदु x मान लेंL जाना जाता है, और एपिपोलर लाइन ईR-एक्सR ज्ञात है और बिंदु X सही छवि में, बिंदु x पर प्रोजेक्ट करता हैR जो इस विशेष एपिपोलर लाइन पर होना चाहिए। इसका मतलब यह है कि एक छवि में देखे गए प्रत्येक बिंदु के लिए एक ही बिंदु को दूसरी छवि में एक ज्ञात एपिपोलर लाइन पर देखा जाना चाहिए। यह एक एपिपोलर बाधा प्रदान करता है: दाएं कैमरे के विमान 'एक्स' पर एक्स का प्रक्षेपणR ई में निहित होना चाहिएR-एक्सR एपिपोलर लाइन। सभी बिंदु एक्स उदा। एक्स1, एक्स2, एक्स3 ओ परL-एक्सL लाइन उस बाधा को सत्यापित करेगी। इसका मतलब है कि यह परीक्षण करना संभव है कि क्या दो बिंदु एक ही 3D बिंदु पर पत्राचार समस्या है। दो कैमरों के बीच आवश्यक मैट्रिक्स या मौलिक मैट्रिक्स (कंप्यूटर दृष्टि) द्वारा एपिपोलर बाधाओं का भी वर्णन किया जा सकता है।
  • यदि अंक xL और एक्सR ज्ञात हैं, उनकी प्रक्षेपण रेखाएँ भी ज्ञात हैं। यदि दो छवि बिंदु एक ही 3D बिंदु X के अनुरूप हैं, तो प्रक्षेपण रेखाओं को X पर सटीक रूप से प्रतिच्छेद करना चाहिए। इसका मतलब है कि X की गणना दो छवि बिंदुओं के निर्देशांक से की जा सकती है, एक प्रक्रिया जिसे त्रिकोण (कंप्यूटर दृष्टि) कहा जाता है।

सरलीकृत मामले

यदि दो कैमरा इमेज प्लेन मेल खाते हैं तो एपिपोलर ज्योमेट्री सरल हो जाती है। इस मामले में, एपिपोलर लाइनें भी मेल खाती हैं (ईL-एक्सL = औरR-एक्सR). इसके अलावा, एपिपोलर लाइनें ओ लाइन के समानांतर हैंL-ओR प्रक्षेपण के केंद्रों के बीच, और व्यवहार में दो छवियों के क्षैतिज अक्षों के साथ संरेखित किया जा सकता है। इसका मतलब यह है कि एक छवि में प्रत्येक बिंदु के लिए, दूसरी छवि में इसके संबंधित बिंदु को केवल एक क्षैतिज रेखा के साथ देखकर पाया जा सकता है। अगर कैमरों को इस तरह से नहीं रखा जा सकता है, तो कैमरों से छवि निर्देशांक को एक सामान्य छवि विमान के अनुकरण के लिए रूपांतरित किया जा सकता है। इस प्रक्रिया को छवि सुधार कहा जाता है।

पुशब्रूम सेंसर की एपिपोलर ज्योमेट्री

पारंपरिक फ्रेम कैमरे के विपरीत, जो एक द्वि-आयामी सीसीडी का उपयोग करता है, पुश झाड़ू स्कैनर लंबी निरंतर छवि पट्टी बनाने के लिए एक-आयामी सीसीडी की एक सरणी को अपनाता है जिसे छवि कालीन कहा जाता है। इस सेंसर की एपिपोलर ज्योमेट्री पिनहोल प्रोजेक्शन कैमरों से काफी अलग है। सबसे पहले, पुशब्रूम सेंसर की एपिपोलर लाइन सीधी नहीं है, लेकिन हाइपरबोला जैसी वक्र है। दूसरा, एपिपोलर 'वक्र' जोड़ी मौजूद नहीं है।[1] हालाँकि, कुछ विशेष परिस्थितियों में, उपग्रह चित्रों की एपिपोलर ज्यामिति को एक रेखीय मॉडल के रूप में माना जा सकता है।[2]


यह भी देखें

संदर्भ


अग्रिम पठन

  • Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in computer vision. Cambridge University Press. ISBN 0-521-54051-8.
  • Vishvjit S. Nalwa (1993). A Guided Tour of Computer Vision. Addison Wesley. pp. 216–240. ISBN 0-201-54853-4.