फेज-शिफ्ट दोलक

From Vigyanwiki
Revision as of 18:51, 4 April 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

फेज-शिफ्ट दोलक ऐसा रैखिक इलेक्ट्रॉनिक दोलक परिपथ है जो साइन लहर आउटपुट उत्पन्न करता है। इसमें विपरीत एम्पलीफायर तत्व होता है जैसे कि ट्रांजिस्टर या ऑप एम्प जिसका आउटपुट फेज-शिफ्ट नेटवर्क के माध्यम से अपने इनपुट पर वापस आ जाता है जिसमें सीढ़ी नेटवर्क में प्रतिरोधक और संधारित्र होते हैं। प्रतिक्रिया नेटवर्क सकारात्मक प्रतिक्रिया देने के लिए दोलन आवृत्ति पर 180 डिग्री द्वारा एम्पलीफायर आउटपुट के चरण को 'शिफ्ट' करता है।[1] फेज-शिफ्ट दोलक का उपयोग प्रायः ऑडियो आवृत्ति पर ऑडियो दोलक के रूप में किया जाता है।

फ़िल्टर चरण परिवर्तन उत्पन्न करता है जो आवृत्ति के साथ बढ़ता है। इसमें उच्च आवृत्तियों पर 180 डिग्री से अधिक की अधिकतम फेज शिफ्ट होनी चाहिए जिससे वांछित दोलन आवृत्ति पर फेज शिफ्ट 180 डिग्री हो सके। सबसे सामान्य चरण-शिफ्ट नेटवर्क तीन समान प्रतिरोधी-संधारित्र चरणों को कैस्केड करता है जो अल्प आवृत्तियों पर शून्य चरण परिवर्तन और उच्च आवृत्तियों पर 270 डिग्री का उत्पादन करता है।

प्रथम एकीकृत परिपथ 1958 में जैक किल्बी द्वारा आविष्कृत फेज शिफ्ट दोलक था।[2]

कार्यान्वयन

बीजेटी का उपयोग करके फेज-शिफ्ट दोलक के लिए परिपथ आरेख

द्विध्रुवी कार्यान्वयन

यह योजनाबद्ध आरेख प्रवर्धक के रूप में सामान्य-उत्सर्जक जुड़े द्विध्रुवी ट्रांजिस्टर का उपयोग करके दोलक दिखाता है। दो प्रतिरोधक R और तीन कैपेसिटर C, RC फेज-शिफ्ट नेटवर्क बनाते हैं जो कलेक्टर से ट्रांजिस्टर के आधार तक प्रतिक्रिया प्रदान करता है। प्रतिरोधक Rb बेस बायस धारा प्रदान करता है। प्रतिरोधक Rc कलेक्टर धारा के लिए कलेक्टर लोड प्रतिरोधक है। प्रतिरोधक Rs परिपथ को बाहरी भार से पृथक करता है।[3]

जेएफईटी का उपयोग करके फेज-शिफ्ट दोलक के लिए परिपथ आरेख

एफईटी कार्यान्वयन

यह परिपथ फील्ड इफ़ेक्ट ट्रांजिस्टर (एफईटी) के साथ दोलक को प्रारंभ करता है। R1, R2, Rs, और Cs ट्रांजिस्टर के लिए बायस प्रदान करते हैं। ध्यान दें कि सकारात्मक प्रतिक्रिया के लिए प्रयुक्त टोपोलॉजी वोल्टेज श्रृंखला प्रतिक्रिया है।

ऑप-एम्प कार्यान्वयन

ऑप-एम्प का उपयोग करते हुए फेज-शिफ्ट दोलक के लिए परिपथ आरेख

आरेख में दिखाए गए चरण-शिफ्ट दोलक का कार्यान्वयन परिचालन प्रवर्धक (ऑप-एम्प), तीन कैपेसिटर और चार प्रतिरोधों का उपयोग करता है।

दोलन आवृत्ति और दोलन मानदंड के लिए परिपथ के मॉडलिंग समीकरण जटिल हैं क्योंकि प्रत्येक RC चरण पूर्व वाले को लोड करता है। आदर्श एंप्लीफायर मानते हुए, अधिक अल्प आउटपुट प्रतिबाधा और अधिक उच्च इनपुट प्रतिबाधा के साथ, दोलन आवृत्ति है:

दोलन को बनाए रखने के लिए आवश्यक प्रतिक्रिया अवरोधक है:

समीकरण तब सरल होते हैं जब सभी प्रतिरोधों (नकारात्मक प्रतिक्रिया रोकनेवाला को छोड़कर) और सभी कैपेसिटर का मान समान होता है। आरेख में, यदि R1=R2=R3=R और C1=C2=C3=C, तब:

और दोलन मानदंड है:

अन्य प्रतिक्रिया दोलक की भाँति, जब पावर को परिपथ पर प्रचलित किया जाता है, तो परिपथ में ऊष्‍मीय विद्युत शोर या टर्न-ऑन क्षणिक (दोलन) दोलन प्रारंभ करने के लिए प्रारंभिक संकेत प्रदान करता है। व्यवहार में, प्रतिक्रिया रोकनेवाला थोड़ा बड़ा होना चाहिए जिससे दोलन समान (छोटा) आयाम बने रहने के अतिरिक्त आयाम में बढ़ेगा। यदि प्रवर्धक आदर्श थे, तो आयाम बिना सीमा के बढ़ जाएगा, किन्तु व्यवहार में प्रवर्धक अरैखिक होते हैं और उनका तात्कालिक लाभ भिन्न होता है। जैसे ही आयाम बढ़ता है, एम्पलीफायर संतृप्ति एम्पलीफायर के औसत लाभ को अल्प कर देगी। परिणामस्वरूप, दोलन आयाम तब तक बढ़ता रहेगा जब तक कि परिपथ का औसत लूप लाभ एकता तक नहीं गिर जाता; उस बिंदु पर, आयाम स्थिर हो जाएगा।

जब एम्पलीफायर की कटऑफ आवृत्ति के निकट होने के लिए दोलन आवृत्ति अधिक होती है, तो एम्पलीफायर स्वयं महत्वपूर्ण चरण परिवर्तन में योगदान देगा, जो प्रतिक्रिया नेटवर्क के चरण परिवर्तन में जोड़ देगा। इसलिए, परिपथ आवृत्ति पर दोलन करेगा जिस पर प्रतिक्रिया फिल्टर का फेज शिफ्ट 180 डिग्री से अल्प है।

RC सेक्शन एक-दूसरे को लोड करने के कारण दोलन बनाए रखने के लिए सिंगल ऑप-एम्पी परिपथ को अपेक्षाकृत उच्च लाभ (लगभग 30) की आवश्यकता होती है।[4] यदि प्रत्येक RC खंड दूसरों को प्रभावित नहीं करता है, तो लगभग 8 से 10 का लाभ दोलन के लिए पर्याप्त होगा। प्रत्येक RC चरण के मध्य ऑप-एम्प बफर डालकर दोलक का पृथक संस्करण बनाया जा सकता है (यह मॉडलिंग समीकरणों को भी सरल करता है)।

संदर्भ

  1. hyperphysics.phy-astr.gsu.edu
  2. "Book: Electronic devices and circuit theory by robert boylestad_page 2" (PDF).
  3. K.W.(Widelski?) (1984). प्रौद्योगिकी का बहुरूपदर्शक. Warsaw, Poland: NOT Sigma.
  4. Mancini, Ron (2002). सभी के लिए ओप एम्प्स (PDF). Dallas, Texas: Texas Instruments. pp. 15–15, 15–16. SLOD006B.

बाहरी संबंध