विक रोटेशन
भौतिकी में, विक रोटेशन, इतालवी भौतिक विज्ञान जियान कार्लो विक के नाम पर, यूक्लिडियन अंतरिक्ष में संबंधित समस्या के समाधान से मिंकोव्स्की अंतरिक्ष में गणितीय समस्या का समाधान खोजने का विधि है जो काल्पनिक-संख्या चर को प्रतिस्थापित करता है। वास्तविक संख्या चर के लिए। इस परिवर्तन का उपयोग क्वांटम यांत्रिकी और अन्य क्षेत्रों में समस्याओं का समाधान खोजने के लिए भी किया जाता है।
भौतिकी में, विक रोटेशन, इतालवी भौतिक विज्ञानी जियान कार्लो विक के नाम पर, यूक्लिडियन अंतरिक्ष में संबंधित समस्या केभौतिकी में, विक रोटेशन, इतालवी भौतिक विज्ञानी जियान कार्लो विक के नाम पर, यूक्लिडियन अंतरिक्ष में संबंधितमाधान खोजने के लिए भी किया जाता है।ग क्वांटम यांत्रिकी और अन्य क्षेत्रों में समस्याओं का समाधान खोजने के लिए भी किया जाता है।
सिंहावलोकन
विक रोटेशन अवलोकन से प्रेरित है कि मिन्कोव्स्की मीट्रिक प्राकृतिक इकाइयों में (मीट्रिक हस्ताक्षर के साथ (−1, +1, +1, +1) सम्मेलन)
और चार आयामी यूक्लिडियन मीट्रिक
समतुल्य हैं यदि कोई समन्वय t को काल्पनिक संख्या मान लेने के लिए की अनुमति देता है। मिन्कोव्स्की मीट्रिक यूक्लिडियन बन जाता है जब t काल्पनिक संख्या तक सीमित है, और इसके विपरीत। निर्देशांक x, y, z, t, और t = -iτ को प्रतिस्थापित करने के साथ मिन्कोस्की स्थान में व्यक्त की गई समस्या को लेने से कभी-कभी वास्तविक यूक्लिडियन निर्देशांक x, y, z, τ में एक समस्या उत्पन्न होती है जिसे हल करना आसान होता है। यह समाधान तब रिवर्स प्रतिस्थापन के अनुसार मूल समस्या का समाधान प्राप्त कर सकता है।
सांख्यिकीय और क्वांटम यांत्रिकी
विक रोटेशन व्युत्क्रम तापमान को काल्पनिक समय से बदलकर सांख्यिकीय यांत्रिकी को क्वांटम यांत्रिकी से जोड़ता है। तापमान T पर लयबद्ध दोलक के बड़े संग्रह पर विचार करें। ऊर्जा E के साथ किसी दिए गए दोलक को खोजने की सापेक्ष संभावना है, जहाँ kB बोल्ट्जमान स्थिरांक है। अवलोकनीय का औसत मूल्य Q सामान्य स्थिरांक तक है,
जहां j सभी राज्यों में चलता है, का मूल्य है Q में j-वें राज्य, और की ऊर्जा है j-वीं अवस्था। अब समय के लिए विकसित होने वाले आधार राज्यों की क्वांटम सुपरइम्पोजिशन में क्वांटम हार्मोनिक ऑसिलेटर पर विचार करें t हैमिल्टनियन के अनुसार H. ऊर्जा के साथ आधार अवस्था का सापेक्ष चरण परिवर्तन E है कहाँ प्लैंक नियतांक को घटाया जाता है। संभाव्यता आयाम कि राज्यों की समान (समान भारित) सुपरपोजिशन
एक मनमाने सुपरपोजिशन के लिए विकसित होता है
एक सामान्य स्थिरांक तक है,
स्टैटिक्स और डायनेमिक्स
विक रोटेशन स्टैटिक्स समस्याओं से संबंधित है n डायनेमिक्स समस्याओं के लिए आयाम n − 1 आयाम, समय के आयाम के लिए अंतरिक्ष के आयाम का व्यापार। साधारण उदाहरण जहां n = 2 गुरुत्वाकर्षण क्षेत्र में निश्चित समापन बिंदुओं वाला लटकता हुआ स्प्रिंग है। वसंत का आकार वक्र है y(x). वसंत संतुलन में है जब इस वक्र से जुड़ी ऊर्जा महत्वपूर्ण बिंदु (एक चरम) पर है; यह महत्वपूर्ण बिंदु आमतौर पर न्यूनतम होता है, इसलिए इस विचार को आमतौर पर कम से कम ऊर्जा का सिद्धांत कहा जाता है। ऊर्जा की गणना करने के लिए, हम अंतरिक्ष में ऊर्जा स्थानिक घनत्व को एकीकृत करते हैं:
कहाँ k वसंत स्थिरांक है, और V(y(x)) गुरुत्वाकर्षण क्षमता है।
संबंधित गतिकी समस्या ऊपर की ओर फेंकी गई चट्टान की है। चट्टान जिस मार्ग का अनुसरण करती है, वह वह है जो क्रिया (भौतिकी) को बढ़ाता है; पहले की तरह, यह चरम सीमा आमतौर पर न्यूनतम है, इसलिए इसे कम से कम कार्रवाई का सिद्धांत कहा जाता है। कार्रवाई Lagrangian यांत्रिकी का समय अभिन्न अंग है:
हमें डायनेमिक्स समस्या का समाधान मिलता है (एक कारक तक i) स्टैटिक्स प्रॉब्लम से विक रोटेशन, रिप्लेस करके y(x) द्वारा y(it) और वसंत स्थिरांक k चट्टान के द्रव्यमान से m:
दोनों थर्मल/क्वांटम और स्थिर/गतिशील
एक साथ लिया गया, पिछले दो उदाहरण दिखाते हैं कि कैसे क्वांटम यांत्रिकी का पथ अभिन्न सूत्रीकरण सांख्यिकीय यांत्रिकी से संबंधित है। सांख्यिकीय यांत्रिकी से, तापमान पर संग्रह में प्रत्येक वसंत का आकार T ऊष्मीय उतार-चढ़ाव के कारण सबसे कम-ऊर्जा आकार से विचलित हो जाएगा; कम से कम ऊर्जा वाले आकार से ऊर्जा के अंतर के साथ किसी दिए गए आकार के साथ वसंत को खोजने की संभावना तेजी से घट जाती है। इसी तरह, क्वांटम कण जो संभावित रूप से गतिमान है, पथों के सुपरपोजिशन द्वारा वर्णित किया जा सकता है, प्रत्येक चरण के साथ exp(iS): संग्रह के आकार में थर्मल भिन्नताएं क्वांटम कण के मार्ग में क्वांटम अनिश्चितता में बदल गई हैं।
अधिक विवरण
श्रोडिंगर समीकरण और ऊष्मा समीकरण भी बाती के घूर्णन से संबंधित हैं। हालाँकि, थोड़ा अंतर है। सांख्यिकीय यांत्रिक n-पॉइंट फ़ंक्शंस सकारात्मकता को संतुष्ट करते हैं, जबकि विक-रोटेट क्वांटम फ़ील्ड थ्योरीज़ श्विंगर फ़ंक्शन #रिफ्लेक्शन पॉज़िटिविटी को संतुष्ट करते हैं।[further explanation needed]
विक रोटेशन को रोटेशन कहा जाता है क्योंकि जब हम जटिल विमान का प्रतिनिधित्व करते हैं, तो जटिल संख्या का गुणा i के कोण से उस संख्या का प्रतिनिधित्व करने वाले वेक्टर (ज्यामिति) को घुमाने के बराबर है π/2 उत्पत्ति (गणित) के बारे में।
विक रोटेशन भी परिमित व्युत्क्रम तापमान पर क्वांटम क्षेत्र सिद्धांत से संबंधित है β ट्यूब पर सांख्यिकीय-यांत्रिक मॉडल के लिए R3 × S1 काल्पनिक समय समन्वय के साथ τ अवधि के साथ आवधिक होना β.
ध्यान दें, हालांकि, विक रोटेशन को जटिल वेक्टर स्पेस पर रोटेशन के रूप में नहीं देखा जा सकता है जो आंतरिक उत्पाद द्वारा प्रेरित पारंपरिक मानदंड और मीट्रिक से लैस है, क्योंकि इस मामले में रोटेशन रद्द हो जाएगा और इसका कोई प्रभाव नहीं पड़ेगा।
व्याख्या और कठोर प्रमाण
विक रोटेशन को उपयोगी ट्रिक के रूप में देखा जा सकता है जो भौतिकी के दो प्रतीत होने वाले अलग-अलग क्षेत्रों के समीकरणों के बीच समानता के कारण होता है। एंथोनी ज़ी द्वारा संक्षेप में क्वांटम फील्ड थ्योरी ने विक रोटेशन पर चर्चा करते हुए कहा[1]
Surely you would hit it big with mystical types if you were to tell them that temperature is equivalent to cyclic imaginary time. At the arithmetic level this connection comes merely from the fact that the central objects in quantum physics exp(−iH T) and in thermal physics exp(βH) are formally related by analytic continuation. Some physicists, myself included, feel that there may be something profound here that we have not quite understood.
यह साबित हो चुका है कि यूक्लिडियन और क्वांटम क्षेत्र सिद्धांत के बीच अधिक कठोर लिंक का निर्माण ओस्टरवाल्डर-श्राडर प्रमेय का उपयोग करके किया जा सकता है।[2]
यह भी देखें
- जटिल स्पेसटाइम
- काल्पनिक समय
- थरथरानवाला समारोह
संदर्भ
- ↑ Zee, A. (2010-02-01). Quantum Field Theory in a Nutshell: Second Edition (in English). Princeton University Press. ISBN 978-1-4008-3532-4.
- ↑ Schlingemann, Dirk (1999-10-01). "यूक्लिडियन फील्ड थ्योरी से क्वांटम फील्ड थ्योरी तक". Reviews in Mathematical Physics. 11 (9): 1151–1178. arXiv:hep-th/9802035. Bibcode:1999RvMaP..11.1151S. doi:10.1142/S0129055X99000362. ISSN 0129-055X. S2CID 9851483.
- Wick, G. C. (1954). "Properties of Bethe-Salpeter Wave Functions". Physical Review. 96 (4): 1124–1134. Bibcode:1954PhRv...96.1124W. doi:10.1103/PhysRev.96.1124.
बाहरी संबंध
- A Spring in Imaginary Time — a worksheet in Lagrangian mechanics illustrating how replacing length by imaginary time turns the parabola of a hanging spring into the inverted parabola of a thrown particle
- Euclidean Gravity — a short note by Ray Streater on the "Euclidean Gravity" programme.