होलोनोमिक फलन
गणित में, और विशेष रूप से गणितीय विश्लेषण में, होलोनोमिक फलन कई चर का सहज कार्य है जो बहुपद गुणांक वाले रैखिक अंतर समीकरण की प्रणाली का समाधान है और डी-मॉड्यूल सिद्धांत के संदर्भ में उपयुक्त आयाम स्थिति को संतुष्ट करता है। अधिक सटीक रूप से, होलोनोमिक फलन चिकनी कार्यों के होलोनोमिक मॉड्यूल का तत्व है। होलोनोमिक कार्यों को अलग-अलग परिमित कार्यों के रूप में भी वर्णित किया जा सकता है, जिन्हें डी-परिमित कार्यों के रूप में भी जाना जाता है। जब चरों में शक्ति श्रृंखला होलोनोमिक फलन का टेलर विस्तार होता है, तो या कई सूचकांकों में इसके गुणांकों के अनुक्रम को 'होलोनोमिक' भी कहा जाता है। होलोनोमिक अनुक्रमों को पी-पुनरावर्ती अनुक्रम भी कहा जाता है: वे पुनरावर्ती रूप से बहुभिन्नरूपी पुनरावर्तन द्वारा परिभाषित होते हैं जो पूरे अनुक्रम से संतुष्ट होते हैं और इसकी उपयुक्त विशेषज्ञताओं द्वारा। अविभाज्य मामले में स्थिति सरल हो जाती है: कोई भी अविभाज्य अनुक्रम जो बहुपद गुणांकों के साथ रेखीय सजातीय पुनरावृत्ति संबंध को संतुष्ट करता है, या समकक्ष रूप से बहुपद गुणांकों के साथ रेखीय सजातीय अंतर समीकरण, होलोनोमिक है।[1]
== चर == में होलोनोमिक फ़ंक्शंस और अनुक्रम
परिभाषाएं
होने देना विशेषता (बीजगणित) 0 का क्षेत्र (गणित) हो (उदाहरण के लिए, या ).
समारोह बहुपद मौजूद होने पर डी-परिमित (या होलोनोमिक) कहा जाता है ऐसा है कि
सभी एक्स के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है कहाँ
और अंतर ऑपरेटर है जो मैप करता है को . f का सत्यानाश करने वाला संकारक कहलाता है (का सत्यानाश करने वाला संकारक रिंग में आदर्श (रिंग थ्योरी) बनाएं का संहारक कहा जाता है ). मात्रा r को सर्वनाश संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक फलन f को ऑर्डर r का कहा जाता है, जब इस तरह के ऑर्डर का विनाश करने वाला ऑपरेटर मौजूद होता है।
क्रम बहुपद मौजूद होने पर पी-रिकर्सिव (या होलोनोमिक) कहा जाता है ऐसा है कि
सभी n के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है कहाँ
और शिफ्ट ऑपरेटर जो मैप करता है को . c का सत्यानाश करने वाला संचालक कहा जाता है (का सत्यानाश करने वाला संचालक रिंग में आदर्श बनाएं का संहारक कहा जाता है ). मात्रा r को सर्वनाश संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक अनुक्रम सी को ऑर्डर आर के रूप में कहा जाता है जब इस तरह के आदेश का विनाश करने वाला ऑपरेटर मौजूद होता है।
होलोनोमिक फ़ंक्शंस ठीक होलोनोमिक अनुक्रमों के उत्पन्न करने वाले कार्य हैं: यदि होलोनोमिक है, फिर गुणांक शक्ति श्रृंखला विस्तार में
होलोनोमिक अनुक्रम बनाएं। इसके विपरीत, किसी दिए गए होलोनोमिक अनुक्रम के लिए , उपरोक्त योग द्वारा परिभाषित कार्य होलोनोमिक है (यह औपचारिक शक्ति श्रृंखला के अर्थ में सत्य है, भले ही योग में अभिसरण का शून्य त्रिज्या हो)।
क्लोजर गुण
होलोनोमिक फ़ंक्शंस (या अनुक्रम) कई बंद करने की संपत्ति को संतुष्ट करते हैं। विशेष रूप से, होलोनोमिक फ़ंक्शंस (या अनुक्रम) अंगूठी (गणित) बनाते हैं। हालांकि, वे विभाजन के तहत बंद नहीं हैं, और इसलिए क्षेत्र (गणित) नहीं बनाते हैं।
अगर और होलोनोमिक कार्य हैं, तो निम्नलिखित कार्य भी होलोनोमिक हैं:
- , कहाँ और स्थिरांक हैं
- (अनुक्रमों का कॉची उत्पाद)
- (अनुक्रमों का हैडमार्ड उत्पाद)
- , कहाँ कोई बीजगणितीय कार्य है। हालाँकि, आम तौर पर होलोनोमिक नहीं है।
होलोनोमिक कार्यों की महत्वपूर्ण संपत्ति यह है कि बंद करने वाले गुण प्रभावी होते हैं: के लिए विनाशकारी ऑपरेटरों को दिया जाता है और , के लिए विनाशक ऑपरेटर उपरोक्त किसी भी ऑपरेशन का उपयोग करके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है।
होलोनोमिक कार्यों और अनुक्रमों के उदाहरण
होलोनोमिक कार्यों के उदाहरणों में शामिल हैं:
- बहुपद और परिमेय फलन सहित सभी बीजगणितीय फलन
- त्रिकोणमितीय कार्य कार्य करता है (लेकिन स्पर्शरेखा, कोटिस्पर्श, छेदक, या व्युत्क्रमज्या नहीं)
- अतिशयोक्तिपूर्ण कार्य फलन (लेकिन हाइपरबोलिक स्पर्शरेखा, कोटैंजेंट, सिकेंट, या कोसेकेंट नहीं)
- घातीय कार्य और लघुगणक (किसी भी आधार पर)
- सामान्यीकृत हाइपरज्यामितीय फलन , के कार्य के रूप में माना जाता है सभी मापदंडों के साथ , स्थिर रखा
- त्रुटि समारोह
- बेसेल कार्य करता है , , ,
- हवादार कार्य करता है ,
होलोनोमिक कार्यों का वर्ग हाइपरज्यामितीय कार्यों के वर्ग का सख्त सुपरसेट है। विशेष कार्यों के उदाहरण जो होलोनोमिक हैं लेकिन हाइपरजियोमेट्रिक नहीं हैं उनमें अरे समारोह शामिल हैं।
होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं:
- फाइबोनैचि संख्याओं का क्रम , और अधिक आम तौर पर, सभी स्थिर-पुनरावर्ती क्रम
- कारख़ाने का का क्रम
- द्विपद गुणांकों का क्रम (एन या के कार्यों के रूप में)
- हार्मोनिक संख्याओं का क्रम , और अधिक आम तौर पर किसी भी पूर्णांक एम के लिए
- कैटलन संख्याओं का क्रम
- Motzkin संख्याओं का क्रम।
- विक्षोभों का क्रम।
हाइपरज्यामितीय कार्य, बेसेल कार्य, और शास्त्रीय ऑर्थोगोनल बहुपद, उनके चर के होलोनोमिक फलन होने के अलावा, उनके मापदंडों के संबंध में होलोनोमिक अनुक्रम भी हैं। उदाहरण के लिए, बेसेल कार्य करता है और दूसरे क्रम के रैखिक पुनरावृत्ति को संतुष्ट करें .
गैर-होलोनोमिक कार्यों और अनुक्रमों के उदाहरण
गैर-होलोनोमिक कार्यों के उदाहरणों में शामिल हैं:
- कार्यक्रम [2]
- समारोह तन(एक्स) + सेकंड(एक्स)[3]
- दो होलोनोमिक कार्यों का भागफल आमतौर पर होलोनोमिक नहीं होता है।
गैर-होलोनोमिक अनुक्रमों के उदाहरणों में शामिल हैं:
- बरनौली संख्या
- वैकल्पिक क्रमपरिवर्तन की संख्या[4]
- विभाजन की संख्या (संख्या सिद्धांत)[3]* संख्या [3]* संख्या कहाँ [3]* अभाज्य संख्याएँ[3]* अलघुकरणीय और जुड़े क्रमपरिवर्तन की गणना।[5]
कई चरों में होलोनोमिक कार्य
This section is empty. You can help by adding to it. (June 2013) |
एल्गोरिदम और सॉफ्टवेयर
कंप्यूटर बीजगणित में होलोनोमिक फ़ंक्शंस शक्तिशाली उपकरण है। होलोनोमिक फलन या अनुक्रम को डेटा की परिमित मात्रा द्वारा दर्शाया जा सकता है, अर्थात् विनाशकारी ऑपरेटर और प्रारंभिक मूल्यों का परिमित सेट, और क्लोजर गुण एल्गोरिथम फैशन में समानता परीक्षण, योग और एकीकरण जैसे संचालन को पूरा करने की अनुमति देते हैं। हाल के वर्षों में, इन तकनीकों ने बड़ी संख्या में विशेष कार्य और संयुक्त पहचान के स्वचालित प्रमाण देने की अनुमति दी है।
इसके अलावा, जटिल विमान में किसी भी बिंदु पर मनमाने ढंग से परिशुद्धता के लिए होलोनोमिक कार्यों का मूल्यांकन करने के लिए और होलोनोमिक अनुक्रम में किसी भी प्रविष्टि की संख्यात्मक रूप से गणना करने के लिए तेज़ एल्गोरिदम मौजूद हैं।
होलोनोमिक कार्यों के साथ काम करने के लिए सॉफ्टवेयर में शामिल हैं:
- द होलोनोमिकफंक्शन्स [1] मेथेमेटिका के लिए पैकेज, क्रिस्टोफ कौश्चन द्वारा विकसित, जो कम्प्यूटिंग क्लोजर प्रॉपर्टीज का समर्थन करता है और यूनीवेरिएट और मल्टीवेरिएट होलोनोमिक फ़ंक्शंस के लिए पहचान साबित करता है।
- मेपल (सॉफ्टवेयर) के लिए एल्गोलिब [2] लाइब्रेरी, जिसमें निम्नलिखित पैकेज शामिल हैं:
यह भी देखें
डायनेमिक डिक्शनरी ऑफ़ मैथमैटिकल फ़ंक्शंस, ऑनलाइन सॉफ़्टवेयर, जो स्वचालित रूप से कई शास्त्रीय और विशेष कार्यों (बिंदु पर मूल्यांकन, टेलर श्रृंखला और किसी भी के लिए स्पर्शोन्मुख विस्तार) का अध्ययन करने के लिए होलोनोमिक फलन पर आधारित है। उपयोगकर्ता द्वारा दी गई सटीक, अंतर समीकरण, टेलर श्रृंखला के गुणांक के लिए पुनरावृत्ति, व्युत्पन्न, अनिश्चितकालीन अभिन्न, प्लॉटिंग, ...)
टिप्पणियाँ
- ↑ See Zeilberger 1990 and Kauers & Paule 2011.
- ↑ This follows from the fact that the function has infinitely many (complex) singularities, whereas functions that satisfy a linear differential equation with polynomial coefficients necessarily have only finitely many singular points.
- ↑ 3.0 3.1 3.2 3.3 3.4 See Flajolet, Gerhold & Salvy 2005.
- ↑ This follows from the fact that the function tan(x) + sec(x) is a nonholonomic function. See Flajolet, Gerhold & Salvy 2005.
- ↑ See Klazar 2003.
संदर्भ
- Flajolet, Philippe; Gerhold, Stefan; Salvy, Bruno (2005), "On the non-holonomic character of logarithms, powers, and the n-th prime function", Electronic Journal of Combinatorics, 11 (2), doi:10.37236/1894, S2CID 184136.
- Flajolet, Philippe; Sedgewick, Robert (2009). Analytic Combinatorics. Cambridge University Press. ISBN 978-0521898065.
- Kauers, Manuel; Paule, Peter (2011). The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Text and Monographs in Symbolic Computation. Springer. ISBN 978-3-7091-0444-6.
- Klazar, Martin (2003). "Irreducible and connected permutations" (PDF) (122).
{{cite journal}}
: Cite journal requires|journal=
(help) (ITI Series preprint)
- Mallinger, Christian (1996). Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences (PDF) (Thesis). Retrieved 4 June 2013.
- Stanley, Richard P. (1999). Enumerative Combinatorics. Vol. 2. Cambridge University Press. ISBN 978-0-521-56069-6.
- Zeilberger, Doron (1990). "A holonomic systems approach to special functions identities". Journal of Computational and Applied Mathematics. 32 (3): 321–368. doi:10.1016/0377-0427(90)90042-X. ISSN 0377-0427. MR 1090884.