टाइटेनियम मिश्र

From Vigyanwiki

टाइटेनियम मिश्र धातु वे मिश्र धातु होती है, जिनमें टाइटेनियम और अन्य रासायनिक तत्वों का मिश्रण होता है। इस तरह के मिश्र धातुओं में अत्यधिक तापमान पर भी बहुत अधिक तन्य शक्ति और कठोरता होती है। वे वजन में हल्के होते हैं, यह असाधारण संक्षारण प्रतिरोध और अत्यधिक तापमान का सामना करने की क्षमता रखते हैं। चूंकि, कच्चे माल और प्रसंस्करण दोनों की उच्च लागत उनके उपयोग को सैन्य अनुप्रयोगों, विमान, अंतरिक्ष यान, साइकिल, चिकित्सा उपकरणों, गहनों, अत्यधिक तनाव वाले घटकों जैसे महंगी स्पोर्ट्स कारो पर कनेक्टिंग छड़ और कुछ प्रीमियम खेल उपकरण और उपभोक्ता इलेक्ट्रॉनिक्स तक सीमित करती है।

चूंकि, व्यावसायिक रूप से शुद्ध टाइटेनियम में स्वीकार्य यांत्रिक गुण होते है और अधिकांश अनुप्रयोगों के लिए आर्थोपेडिक और दंत प्रत्यारोपण के लिए उपयोग किया जाता है, अधिकांश अनुप्रयोगों के लिए टाइटेनियम को कम मात्रा में एल्यूमीनियम और वैनेडियम के साथ क्रमशः 6% और 4% वजन के साथ मिश्रित किया जाता है। इस मिश्रण में एक ठोस घुलनशीलता होती है, जो तापमान के साथ नाटकीय रूप से बदलती रहती है, जिससे इसे अवक्षेपण को मजबूत करने की अनुमति मिलती है। यह ऊष्मा परिशोधन प्रक्रिया मिश्र धातु के अंतिम रूप में बनाये जाने के बाद की जाती है, लेकिन इससे पहले इसे उपयोग में लाया जाता है, जिससे उच्च शक्ति वाले उत्पाद को अधिक आसानी से बनाया जा सकता है।

श्रेणियां

टाइटेनियम मिश्र धातुओं को सामान्यतः चार मुख्य श्रेणियों में वर्गीकृत किया जाता है[1]

  • अल्फा मिश्र धातु जिसमें टिन और/या अल्फा स्टेबलाइजर्स, जैसे एल्यूमीनियम या ऑक्सीजन जैसे तटस्थ मिश्र धातु के तत्व होते हैं। ये ऊष्मा उपचार योग्य नहीं होते है। उदाहरणों के रूप में सम्मलित होते है,[2] टीआई-5एएल-2एसएन-इएलआई, टीआई-8एएल-1एमओ-1वी.के रूप में होते है
  • निकट-अल्फा मिश्र धातुओं में डुकटाइल बीटा चरण की मात्रा के रूप में होती है। अल्फा चरण स्टेबलाइजर्स के अतिरिक्त अल्फा मिश्र धातुओं के पास बीटा चरण स्टेबलाइजर्स के 1-2% होते है, जैसे मोलिब्डेनम सिलिकॉन या वैनेडियम उदाहरणों के रूप में सम्मलित होते है,[2] टीआई-6एएल-2एसएन-4जेडआर-2एमओ, टीआई-5एएल-5एसएन-2जेडआर-2एमओ, आईएमआई 685, टीआई-1100.के रूप में होते है
  • अल्फा और बीटा मिश्र धातु के रूप में होते है, जो मेटास्टेबल होते हैं और सामान्यतः अल्फा और बीटा स्टेबलाइजर्स दोनों के कुछ संयोजन के रूप में सम्मलित होते है और जो हीट ट्रीटेड हो सकते हैं उदाहरणों के रूप में सम्मलित है[2] टीआई-6एएल-4वी, टीआई-6एएल-4वी-इएलआई, टीआई-6एएल-6वी-2एसएन, टीआई-6एएल-7एनबी.के रूप में होते है
  • बीटा और निकट बीटा मिश्रधातु के रूप में होते है, जो मेटास्टेबल हैं और जिनमें मोलिब्डेनम सिलिकॉन और वैनेडियम जैसे पर्याप्त बीटा स्टेबलाइजर्स होते हैं, जो उन्हें शमित बीटा चरण को बनाए रखने की अनुमति देते हैं और जिनका उपचार किया जाता है और शक्ति में सुधार के लिए वृद्ध के रूप में होते हैं।[2] टीआई-10वी-2एफइ-3एएल, टीआई–29एनबी–13टीए-4.6जेडआर,[3] टीआई-13वी-11सीआर-3एएल, टीआई-8एमओ-8वी-2एफइ-3एएल बीटा सी, टीआई-15-3.के रूप में होते हैं।

बीटा-टाइटेनियम

बीटा टाइटेनियम मिश्र धातु टाइटेनियम के बीसीसी एलोोट्रोपिक बहुरूपी रूप को बीटा कहते हैं। इस मिश्र धातु में प्रयुक्त किये जाने वाले तत्व अलग-अलग मात्रा में टाइटेनियम के अतिरिक्त निम्नलिखित में से एक या अधिक मिश्रधातु में प्रयुक्त होते हैं। ये मोलिब्डेनम, वैनेडियम, नाइओबियम, टैंटलम, ज़िरकोनियम, मैंगनीज, लोहा, क्रोमियम, कोबाल्ट, निकल और तांबा के रूप में होते है।

टाइटेनियम मिश्र धातुओं में उत्कृष्ट फॉर्मैबिलिटी होती है और इसे आसानी से वेल्ड किया जा सकता है।[4]

बीटा टाइटेनियम आजकल बड़े पैमाने पर ऑर्थोडॉन्टिक क्षेत्र में उपयोग किया जाता है और 1980 के दशक में ऑर्थोडॉन्टिक्स उपयोग के लिए अपनाया गया था। इस प्रकार के मिश्र धातु ने कुछ उपयोगों के लिए स्टेनलेस स्टील को बदल दिया, क्योंकि 1960 के दशक से स्टेनलेस स्टील ऑर्थोडॉन्टिक्स पर हावी हो गया था। इसमें 18-8 ऑस्टेनिटिक स्टेनलेस स्टील की तुलना में लगभग दो बार लोच अनुपात की शक्ति / मापांक के रूप में होते है, स्प्रिंग्स में बड़ा लोचदार विक्षेपण और स्टेनलेस स्टील उपकरणों के नीचे 2.2 गुना कम बल प्रति इकाई विस्थापन के रूप में होते है

कुछ बीटा टाइटेनियम मिश्र धातु क्रायोजेनिक तापमान पर कठिन और भंगुर हेक्सागोनल क्रिस्टल फैमली ओमेगा-टाइटेनियम में परिवर्तित हो सकते हैं[5] या आयनीकरण विकिरण के प्रभाव में में परिवर्तित हो सकते हैं।[6]

संक्रमण तापमान

परिवेश के तापमान और दबाव पर टाइटेनियम की क्रिस्टल संरचना 1.587 के एसी/ए अनुपात के साथ क्लोज-पैक हेक्सागोनल α चरण के रूप में होता है। लगभग 890 डिग्री सेल्सियस पर, टाइटेनियम एक बॉडी -केंद्रित क्यूबिक β चरण में एक अपररूपता परिवर्तन से गुजरता है, जो पिघलने के तापमान पर स्थिर रहता है।

कुछ मिश्र धातु तत्व, जिन्हें अल्फा स्टेबलाइजर्स कहा जाता है, इस प्रकार अल्फा टू बीटा संक्रमण तापमान बढ़ाते हैं,[lower-roman 1] जबकि अन्य बीटा स्टेबलाइजर्स संक्रमण तापमान को कम करते हैं। एल्यूमीनियम, गैलियम, जर्मेनियम, कार्बन, ऑक्सीजन और नाइट्रोजन अल्फा स्टेबलाइजर्स के रूप में होते है। मोलिब्डेनम, वैनेडियम, टैंटलम, नाइओबियम, मैंगनीज, लोहा, क्रोमियम, कोबाल्ट, निकल, तांबा और सिलिकॉन बीटा स्टेबलाइजर्स के रूप में होते है।[7]

गुण

सामान्यतः , बीटा-चरण टाइटेनियम अधिक नमनीय चरण होता है और अल्फा-चरण मजबूत होता है फिर भी कम नमनीय होता है, क्लोज-पैकिंग की तुलना में बीटा-चरण के घन क्रिस्टल प्रणाली संरचना में स्लिप (सामग्री विज्ञान) की बड़ी संख्या के कारण बराबर क्षेत्रों के अल्फा-चरण। अल्फा-बीटा-चरण टाइटेनियम में एक यांत्रिक गुण है जो दोनों के बीच में है।

उच्च तापमान पर धातु में रंजातु डाइऑक्साइड घुल जाता है, और इसका गठन बहुत ऊर्जावान होता है। इन दो कारकों का मतलब है कि सबसे सावधानी से शुद्ध किए गए टाइटेनियम को छोड़कर सभी टाइटेनियम में घुलित ऑक्सीजन की एक महत्वपूर्ण मात्रा है, और इसलिए इसे Ti-O मिश्र धातु माना जा सकता है। ऑक्साइड अवक्षेप कुछ शक्ति प्रदान करते हैं (जैसा कि ऊपर चर्चा की गई है), लेकिन गर्मी उपचार के लिए बहुत प्रतिक्रियाशील नहीं हैं और मिश्र धातु की कठोरता को अधिक सीमा तक कम कर सकते हैं।

कई मिश्र धातुओं में मामूली योजक के रूप में टाइटेनियम भी होता है, लेकिन चूंकि मिश्र धातुओं को सामान्यतः वर्गीकृत किया जाता है, जिसके अनुसार तत्व अधिकांश सामग्री बनाते हैं, इन्हें सामान्यतः टाइटेनियम मिश्र धातु नहीं माना जाता है। टाइटेनियम#अनुप्रयोगों पर उप-लेख देखें।

अकेले टाइटेनियम एक मजबूत, हल्की धातु है। यह सामान्य, निम्न-कार्बन स्टील्स से अधिक मजबूत है, लेकिन 45% हल्का है। यह कमजोर एल्यूमीनियम मिश्र धातुओं की तुलना में दोगुना मजबूत है लेकिन केवल 60% भारी है। टाइटेनियम में समुद्री जल के लिए उत्कृष्ट संक्षारण प्रतिरोध है, और इस प्रकार इसका उपयोग प्रोपेलर शाफ्ट, हेराफेरी और नावों के अन्य भागों में किया जाता है जो समुद्री जल के संपर्क में आते हैं। टाइटेनियम और इसकी मिश्र धातुओं का उपयोग हवाई जहाजों, मिसाइलों और रॉकेटों में किया जाता है जहां ताकत, कम वजन और उच्च तापमान का प्रतिरोध महत्वपूर्ण होता है। इसके अतिरिक्त , चूंकि टाइटेनियम मानव शरीर के भीतर प्रतिक्रिया नहीं करता है, यह और इसके मिश्र धातुओं का उपयोग कृत्रिम जोड़ों, शिकंजा और फ्रैक्चर के लिए प्लेट और अन्य जैविक प्रत्यारोपण के लिए किया जाता है। देखें: टाइटेनियम#ऑर्थोपेडिक इम्प्लांट्स।

टाइटेनियम ग्रेड

टाइटेनियम और टाइटेनियम मिश्र धातु सीमलेस पाइप पर एएसटीएम अंतर्राष्ट्रीय मानक निम्नलिखित मिश्र धातुओं को संदर्भित करता है, जिसके लिए निम्नलिखित उपचार की आवश्यकता होती है:

मिश्र धातुओं की आपूर्ति निम्नलिखित स्थितियों में की जा सकती है: ग्रेड 5, 23, 24, 25, 29, 35, या 36 एनीलेड या वृद्ध; ग्रेड 9, 18, 28, या 38 ठंडे काम और तनाव से राहत या एनीलेड; ग्रेड 9, 18, 23, 28, या 29 रूपांतरित-बीटा स्थिति; और ग्रेड 19, 20, या 21 समाधान-उपचारित या समाधान-उपचारित और वृद्ध।[8]

नोट 1—एच ग्रेड सामग्री उच्च गारंटी वाली न्यूनतम अत्यंत सहनशक्ति को छोड़कर संबंधित न्यूमेरिक ग्रेड (अर्थात् ग्रेड 2एच = ग्रेड 2) के समान है, और हमेशा अपने संबंधित न्यूमेरिक ग्रेड की आवश्यकताओं को पूरा करने के रूप में प्रमाणित हो सकती है। . ग्रेड 2H, 7H, 16H और 26H मुख्य रूप से प्रेशर वेसल के उपयोग के लिए हैं।[8]

5200 से अधिक वाणिज्यिक ग्रेड 2, 7, 16, और 26 परीक्षण रिपोर्ट के अध्ययन के आधार पर उपयोगकर्ता एसोसिएशन अनुरोध के उत्तर में एच ग्रेड जोड़े गए थे, जहां 99% से अधिक 58 केएसआई न्यूनतम यूटीएस से मिले थे।[8]

ग्रेड 1
सबसे नमनीय और सबसे नरम टाइटेनियम मिश्र धातु है। यह ठंड बनाने और संक्षारक वातावरण के लिए एक अच्छा उपाय है। ASTM/ASME SB-265 व्यावसायिक रूप से शुद्ध टाइटेनियम शीट और प्लेट के लिए मानक प्रदान करता है।[9]
ग्रेड 2
बेरोजगार टाइटेनियम, मानक ऑक्सीजन।
ग्रेड 2एच
बिना मिला हुआ टाइटेनियम (58 केएसआई न्यूनतम यूटीएस के साथ ग्रेड 2)।
ग्रेड 3
बेरोजगार टाइटेनियम, मध्यम ऑक्सीजन।
ग्रेड 1-4 शुद्ध हैं और व्यावसायिक रूप से शुद्ध या सीपी माने जाते हैं। सामान्यतः तन्यता और उपज शक्ति इन शुद्ध ग्रेड के लिए ग्रेड संख्या के साथ बढ़ जाती है। उनके भौतिक गुणों में अंतर मुख्य रूप से अंतरालीय तत्वों की मात्रा के कारण होता है। वे संक्षारण प्रतिरोध अनुप्रयोगों के लिए उपयोग किए जाते हैं जहां लागत, निर्माण में आसानी और वेल्डिंग महत्वपूर्ण हैं।
ग्रेड 5 को Ti6Al4V, Ti-6Al-4V या Ti 6-4 के नाम से भी जाना जाता है
Ti-6Al-4V-ELI (ग्रेड 23) के साथ भ्रमित नहीं होना, सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है। इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.25% (अधिकतम) आयरन, 0.2% (अधिकतम) ऑक्सीजन और शेष टाइटेनियम की रासायनिक संरचना है।[10]यह व्यावसायिक रूप से शुद्ध टाइटेनियम (ग्रेड 1-4) की तुलना में अधिक मजबूत है, जबकि समान कठोरता और तापीय गुण हैं (तापीय चालकता को छोड़कर, जो CP Ti की तुलना में ग्रेड 5 Ti में लगभग 60% कम है)।[11] इसके कई फायदों में से, यह उष्मा उपचार योग्य है। यह ग्रेड ताकत, संक्षारण प्रतिरोध, वेल्ड और निर्माण क्षमता का एक उत्कृष्ट संयोजन है।

यह अल्फा-बीटा मिश्र धातु टाइटेनियम उद्योग का वर्कहॉर्स मिश्र धातु है। मिश्रधातु 15 मिमी तक के अनुभाग आकार में पूरी तरह से उपचार योग्य है और इसका उपयोग लगभग 400 °C (750 °F) तक किया जाता है। चूंकि यह सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है - पिघले हुए सभी मिश्र धातुओं के 70% से अधिक Ti6Al4V के एक उप-ग्रेड हैं, इसका उपयोग कई एयरोस्पेस एयरफ्रेम और इंजन घटक का उपयोग करता है और समुद्री, अपतटीय और बिजली उत्पादन में प्रमुख गैर-एयरोस्पेस अनुप्रयोग भी करता है। विशेष रूप से उद्योग।[12]

अनुप्रयोग: ब्लेड, डिस्क, अंगूठियां, एयरफ्रेम, फास्टनर, घटक। वेसल्स, केस, हब, फोर्जिंग। बायोमेडिकल प्रत्यारोपण।[10]

सामान्यतः , Ti-6Al-4V का उपयोग 400 डिग्री सेल्सियस तक के अनुप्रयोगों में किया जाता है। इसका घनत्व लगभग 4420 किग्रा/मीटर है3, यंग का 120 GPa का मापांक, और 1000 MPa की तन्य शक्ति।[13] तुलनात्मक रूप से, एनीलेड टाइप 316 स्टेनलेस स्टील का घनत्व 8000 किलोग्राम/मीटर है3, 193 GPa का मापांक, और 570 MPa की तन्य शक्ति।[14] टेम्पर्ड 6061 एल्यूमीनियम मिश्र धातु का घनत्व 2700 किग्रा/मीटर है3, 69 GPa का मापांक, और 310 MPa की तन्य शक्ति, क्रमशः।[15]
Ti-6Al-4V मानक विनिर्देशों में सम्मलित हैं:[16]
  • AMS: 4911, 4928, 4965, 4967, 6930, 6931, T-9046, T9047
  • एएसटीएम: बी265, बी348, एफ1472
  • लाख: T9046 T9047
  • डीएमएस: 1592, 1570
ग्रेड 6
इसमें 5% एल्यूमीनियम और 2.5% टिन होता है। इसे Ti-5Al-2.5Sn के नाम से भी जाना जाता है। उच्च तापमान पर इसकी अच्छी वेल्डेबिलिटी, स्थिरता और ताकत के कारण इस मिश्र धातु का उपयोग एयरफ्रेम और जेट इंजनों में किया जाता है।[17]
ग्रेड 7
इसमें 0.12 से 0.25% दुर्ग होता है। यह ग्रेड ग्रेड 2 के समान है। जोड़े गए पैलेडियम की थोड़ी मात्रा इसे कम तापमान और उच्च पीएच पर बेहतर दरार जंग प्रतिरोध देती है।[18]
ग्रेड 7H
उन्नत संक्षारण प्रतिरोध के साथ ग्रेड 7 के समान है।[18]; ग्रेड 9: इसमें 3.0% एल्यूमीनियम और 2.5% वैनेडियम होता है। यह ग्रेड वेल्डिंग की आसानी और शुद्ध ग्रेड के निर्माण और ग्रेड 5 की उच्च शक्ति के बीच एक समझौता है। यह सामान्यतः हाइड्रोलिक्स और एथलेटिक उपकरणों के लिए विमान टयूबिंग में उपयोग किया जाता है।
ग्रेड 11
में 0.12 से 0.25% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।[19]
ग्रेड 12
0.3% मोलिब्डेनम और 0.8% निकल होता है।[19]; <अवधि शैली = फ़ॉन्ट-वजन: सामान्य; >ग्रेड 13, 14, और 15: सभी में 0.5% निकल और 0.05% दयाता होता है।
ग्रेड 16
में 0.04 से 0.08% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।
ग्रेड 16H
में 0.04 से 0.08% पैलेडियम होता है।
ग्रेड 17
में 0.04 से 0.08% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।[citation needed]
ग्रेड 18
इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.04 से 0.08% पैलेडियम होता है। यह ग्रेड यांत्रिक विशेषताओं के स्थिति में ग्रेड 9 के समान है। जोड़ा गया पैलेडियम इसे संक्षारण प्रतिरोध में वृद्धि देता है।[citation needed]
ग्रेड 19
इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम और 4% मोलिब्डेनम सम्मलित हैं।
ग्रेड 20
इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम, 4% मोलिब्डेनम और 0.04% से 0.08% पैलेडियम सम्मलित हैं।
ग्रेड 21
इसमें 15% मोलिब्डेनम, 3% एल्यूमीनियम, 2.7% नाइओबियम और 0.25% सिलिकॉन होता है।
ग्रेड 23 को Ti-6Al-4V-ELI या TAV-ELI के रूप में भी जाना जाता है
इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.13% (अधिकतम) ऑक्सीजन होता है। ELI का मतलब एक्स्ट्रा लो इंटरस्टीशियल है। अंतरालीय तत्व ऑक्सीजन और आयरन की कमी से ताकत में कुछ कमी के साथ लचीलापन और फ्रैक्चर की कठोरता में सुधार होता है।[19]TAV-ELI सबसे अधिक उपयोग किया जाने वाला मेडिकल इम्प्लांट (दवा) -ग्रेड टाइटेनियम मिश्र धातु है।[19][20]:Ti-6Al-4V-ELI मानक विनिर्देशों में सम्मलित हैं:[20]
  • एम्स: 4907, 4930, 6932, T9046, T9047
  • एएसटीएम: बी265, बी348, एफ136
  • लाख: T9046 T9047
ग्रेड 24
इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.04% से 0.08% पैलेडियम होता है।
ग्रेड 25
6% एल्यूमीनियम, 4% वैनेडियम और 0.3% से 0.8% निकल और 0.04% से 0.08% पैलेडियम सम्मलित हैं।
ग्रेड 26, 26H, और 27
सभी में 0.08 से 0.14% रूथेनियम होता है।
ग्रेड 28
इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।
ग्रेड 29
इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।

ग्रेड 30 और 31: इसमें 0.3% कोबाल्ट और 0.05% पैलेडियम होता है।

ग्रेड 32
इसमें 5% एल्युमीनियम, 1% टिन, 1% जिरकोनियम, 1% वैनेडियम और 0.8% मोलिब्डेनम होता है।

<अवधि शैली = फ़ॉन्ट-वजन: सामान्य; > ग्रेड 33 और 34: इसमें 0.4% निकल, 0.015% पैलेडियम, 0.025% रूथेनियम और 0.15% क्रोमियम होता है।[citation needed]

ग्रेड 35
इसमें 4.5% एल्युमीनियम, 2% मोलिब्डेनम, 1.6% वैनेडियम, 0.5% आयरन और 0.3% सिलिकॉन होता है।
ग्रेड 36
इसमें 45% नाइओबियम होता है।
ग्रेड 37
इसमें 1.5% एल्यूमीनियम होता है।
ग्रेड 38
इसमें 4% एल्युमीनियम, 2.5% वैनेडियम और 1.5% आयरन होता है। यह ग्रेड 1990 के दशक में एक कवच चढ़ाना के रूप में उपयोग के लिए विकसित किया गया था। आयरन बीटा स्टेबलाइजर के रूप में आवश्यक वैनेडियम की मात्रा को कम कर देता है। इसके यांत्रिक गुण ग्रेड 5 के समान हैं, लेकिन इसमें ग्रेड 9 के समान अच्छी ठंड कार्य क्षमता है।[21]

गर्मी से निजात

टाइटेनियम मिश्र धातु कई कारणों से गर्मी उपचार कर रहे हैं, मुख्य हैं समाधान उपचार और उम्र बढ़ने के साथ-साथ फ्रैक्चर क्रूरता, थकान शक्ति और उच्च तापमान रेंगना शक्ति जैसे विशेष गुणों को अनुकूलित करने के लिए ताकत बढ़ाने के लिए।

अल्फा और नियर-अल्फा मिश्र धातुओं को गर्मी उपचार द्वारा नाटकीय रूप से नहीं बदला जा सकता है। तनाव से राहत और एनीलिंग ऐसी प्रक्रियाएं हैं जिन्हें टाइटेनियम मिश्र धातुओं के इस वर्ग के लिए नियोजित किया जा सकता है। बीटा मिश्रधातुओं के लिए ताप उपचार चक्र अल्फा और अल्फा-बीटा मिश्र धातुओं से अधिक भिन्न होते हैं। बीटा मिश्र धातुओं को न केवल तनाव से राहत या निस्तारण किया जा सकता है, बल्कि उपचारित और वृद्ध भी किया जा सकता है। अल्फा-बीटा मिश्र धातु दो-चरण मिश्र धातु है, जिसमें कमरे के तापमान पर अल्फा और बीटा चरण दोनों सम्मलित हैं। अल्फ़ा-बीटा मिश्रधातुओं में फ़ेज़ संघटन, आकार और फ़ेज़ के वितरण को ताप उपचार द्वारा कुछ सीमाओं के भीतर हेरफेर किया जा सकता है, इस प्रकार गुणों की सिलाई की अनुमति मिलती है।

अल्फा और नियर-अल्फा एलॉय: अल्फा एलॉय की सूक्ष्म संरचना को गर्मी उपचार द्वारा दृढ़ता से हेरफेर नहीं किया जा सकता है क्योंकि अल्फा एलॉय में कोई महत्वपूर्ण चरण परिवर्तन नहीं होता है। परिणाम स्वरुप , गर्मी उपचार द्वारा अल्फा मिश्र धातुओं के लिए उच्च शक्ति प्राप्त नहीं की जा सकती। फिर भी, अल्फा और नियर-अल्फा टाइटेनियम मिश्रधातुओं को तनाव से मुक्त किया जा सकता है और एनील किया जा सकता है। अल्फा-बीटा मिश्र धातु: अल्फा-बीटा संक्रमण तापमान के नीचे या ऊपर अल्फा-बीटा मिश्र धातुओं के काम के साथ-साथ गर्मी उपचार से बड़े सूक्ष्म संरचनात्मक परिवर्तन प्राप्त किए जा सकते हैं। यह सामग्री को अधिक सख्त बना सकता है। समाधान उपचार और उम्र बढ़ने का उपयोग अल्फा-बीटा मिश्र धातुओं में अधिकतम ताकत उत्पन्न करने के लिए किया जाता है। इसके अतिरिक्त , टाइटेनियम मिश्र धातुओं के इस समूह के लिए तनाव-राहत ताप उपचार सहित अन्य ताप उपचारों का भी अभ्यास किया जाता है। बीटा मिश्रधातु: वाणिज्यिक बीटा मिश्रधातुओं में, तनाव-राहत और उम्र बढ़ने के उपचारों को जोड़ा जा सकता है।

अनुप्रयोग

एयरोस्पेस संरचनाएं

जंग और गर्मी के प्रतिरोध और इसकी उच्च शक्ति-से-भार अनुपात के लिए टाइटेनियम का नियमित रूप से विमानन में उपयोग किया जाता है। स्टील की तुलना में हल्का होने पर टाइटेनियम मिश्र धातु सामान्यतः एल्यूमीनियम मिश्र धातु से अधिक मजबूत होते हैं।

बायोमेडिकल

कलाई के लिए टाइटेनियम प्लेट

धातु आर्थोपेडिक संयुक्त प्रतिस्थापन और हड्डी प्लेट सर्जरी के निर्माण के लिए टाइटेनियम मिश्र धातुओं का बड़े पैमाने पर उपयोग किया गया है। वे सामान्यतः संख्यात्मक नियंत्रण, कंप्यूटर एडेड डिजाइन मशीनिंग, या पाउडर धातु विज्ञान उत्पादन द्वारा गढ़ा या कास्ट बार स्टॉक से उत्पादित होते हैं। इनमें से प्रत्येक तकनीक निहित फायदे और नुकसान के साथ आती है। गढ़ा हुआ उत्पाद मशीनिंग के दौरान उत्पाद के अंतिम आकार में व्यापक सामग्री हानि के साथ आता है और कास्ट नमूनों के लिए किसी उत्पाद को उसके अंतिम आकार में प्राप्त करना कुछ सीमा तक आगे की प्रक्रिया और उपचार (जैसे वर्षा सख्त) को सीमित करता है, फिर भी कास्टिंग अधिक सामग्री प्रभावी है। पारंपरिक पाउडर धातु विज्ञान के विधियों े भी अधिक सामग्री कुशल हैं, फिर भी पूरी तरह से सघन उत्पाद प्राप्त करना एक सामान्य मुद्दा हो सकता है।[22]

सॉलिड फ़्रीफ़ॉर्म फैब्रिकेशन (3 डी प्रिंटिग ) के उद्भव के साथ कस्टम-डिज़ाइन किए गए बायोमेडिकल इम्प्लांट्स (जैसे हिप जॉइंट्स) के उत्पादन की संभावना महसूस की गई है। चूंकि यह वर्तमान में बड़े पैमाने पर लागू नहीं किया जाता है, मुक्त निर्माण विधि अपशिष्ट पाउडर (निर्माण प्रक्रिया से) को रीसायकल करने की क्षमता प्रदान करती है और चयनात्मकता के लिए वांछनीय गुण बनाती है और इस प्रकार इम्प्लांट का प्रदर्शन करती है। इलेक्ट्रॉन बीम योज्य निर्माण (ईबीएम) और चयनात्मक लेजर पिघलने (एसएलएम) दो विधियों े हैं जो टीआई-अलॉयज के फ्रीफॉर्म फैब्रिकेशन के लिए लागू होते हैं। विनिर्माण पैरामीटर उत्पाद के माइक्रोस्ट्रक्चर को बहुत प्रभावित करते हैं, जहां उदा। एसएलएम में पिघलने की कम डिग्री के संयोजन में एक तेज शीतलन दर, मार्टेंसिटिक अल्फा-प्राइम चरण के प्रमुख गठन की ओर ले जाती है, जिससे एक बहुत ही कठोर उत्पाद मिलता है।[22]

Ti-6Al-4V / Ti-6Al-4V-ELI
इस मिश्रधातु की जैव-अनुकूलता अच्छी है, और यह न तो साइटोटॉक्सिक है और न ही जीनोटॉक्सिक।[23] Ti-6Al-4V कुछ लोडिंग स्थितियों में खराब कतरनी ताकत और खराब सतह पहनने के गुणों से ग्रस्त है:[10]

जैव संगतता: उत्कृष्ट, खासकर जब ऊतक या हड्डी के साथ सीधे संपर्क की आवश्यकता होती है। Ti-6Al-4V की खराब अपरूपण शक्ति इसे हड्डी के शिकंजे या प्लेटों के लिए अवांछनीय बनाती है। इसमें खराब सतह पहनने के गुण भी होते हैं और फिसलने पर स्वयं और अन्य धातुओं के संपर्क में आने पर जब्त हो जाता है। सतह के उपचार जैसे नाइट्राइडिंग और ऑक्सीकरण सतह पहनने के गुणों में सुधार कर सकते हैं।[10]</ब्लॉककोट>

Ti-6Al-7Nb
इस मिश्र धातु को Ti-6Al-4V के बायोमेडिकल प्रतिस्थापन के रूप में विकसित किया गया था, क्योंकि Ti-6Al-4V में वैनेडियम होता है, एक ऐसा तत्व जो पृथक होने पर साइटोटॉक्सिक परिणामों का प्रदर्शन करता है।[24]: 1  Ti-6Al-7Nb में 6% एल्यूमीनियम और 7% नाइओबियम होता है।[24]{{rp|18}

Ti6Al7Nb सर्जिकल इम्प्लांट्स के लिए उत्कृष्ट जैव अनुकूलता के साथ समर्पित उच्च शक्ति टाइटेनियम मिश्र धातु है। कूल्हे के जोड़ों को बदलने के लिए उपयोग किया जाता है, यह 1986 की शुरुआत से नैदानिक ​​​​उपयोग में है।[25]</ब्लॉककोट>

संदर्भ

Notes
  1. In a titanium or titanium alloy, alpha-to-beta transition temperature is the temperature above which the beta phase becomes thermodynamically favorable.
Sources
  1. Characteristics of Alpha, Alpha Beta and Beta Titanium Alloys
  2. 2.0 2.1 2.2 2.3 Titanium – A Technical Guide. ASM International. 2000. ISBN 9781615030620.
  3. Najdahmadi, A.; Zarei-Hanzaki, A.; Farghadani, E. (1 February 2014). "Mechanical properties enhancement in Ti–29Nb–13Ta–4.6Zr alloy via heat treatment with no detrimental effect on its biocompatibility". Materials & Design. 54: 786–791. doi:10.1016/j.matdes.2013.09.007. ISSN 0261-3069.
  4. Goldberg, Jon; Burstone, Charles J. (1979). "ऑर्थोडोंटिक उपकरणों में उपयोग के लिए बीटा टाइटेनियम मिश्र धातुओं का मूल्यांकन". Journal of Dental Research. 58 (2): 593–599. doi:10.1177/00220345790580020901. PMID 283089. S2CID 29064479.
  5. De Fontaine§§, D.; Paton, N.E.; Williams, J.C. (November 1971). "ट्रांसफॉर्मेशन डे ला फेज ओमेगा डन्स लेस एलियेजेज डी टाइटेन कॉमे उदाहरण डे रिएक्शन कंट्रोलर्स पर डिसप्लेसमेंटओमेगा फेज ट्रांसफॉर्मेशन इन टाइटेनियम अलॉयज ए उदाहरण ऑफ़ द डिसप्लेसमेंट-नियंत्रित रिएक्शन". Acta Metallurgica. 19 (11): 1153–1162. doi:10.1016/0001-6160(71)90047-2. Retrieved 27 April 2020.
  6. Ishida, Taku; Wakai, Eiichi; Makimura, Shunsuke; Casella, Andrew M.; Edwards, Danny J.; Senor, David J.; Ammigan, Kavin; Hurh, Patrick G.; Densham, Christopher J.; Fitton, Michael D.; Bennett, Joe M.; Kim, Dohyun; Simos, Nikolaos; Hagiwara, Masayuki; Kawamura, Naritoshi; Meigo, Shin-ichiro; Yohehara, Katsuya (2020). "Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V". Journal of Nuclear Materials. 541: 152413. arXiv:2004.11562. doi:10.1016/j.jnucmat.2020.152413. S2CID 216144772.
  7. Vydehi Arun Joshi. Titanium Alloys: An Atlas of Structures and Fracture Features. CRC Press, 2006.
  8. 8.0 8.1 8.2 ASTM B861 – 10 Standard Specification for Titanium and Titanium Alloy Seamless Pipe (Grades 1 to 38)
  9. Titanium Grades, Application
  10. 10.0 10.1 10.2 10.3 "Titanium-6-4". Retrieved 2009-02-19.
  11. Compare Materials: Commercially Pure Titanium and 6Al-4V (Grade 5) Titanium
  12. Titanium Alloys – Ti6Al4V Grade 5
  13. Material Properties Data: 6Al-4V (Grade 5) Titanium Alloy
  14. Material Properties Data: Marine Grade Stainless Steel
  15. Material Properties Data: 6061-T6 Aluminum
  16. "6Al-4V Titanium". Performance Titanium Group.
  17. "Titanium Ti-5Al-2.5Sn (Grade 6) - Material Web".
  18. 18.0 18.1 "Titanium Grade 7 (Titanium Palladium alloy, Ti-IIPd)-Metals, Alloys, and Sputtering Targets". Archived from the original on 2012-04-26. Retrieved 2011-12-19.
  19. 19.0 19.1 19.2 19.3 Titanium Grade Overview
  20. 20.0 20.1 "6Al-4V-ELI Titanium". Performance Titanium Group.
  21. ArmyCorrosion.com[dead link]
  22. 22.0 22.1 Murr, L. E.; Quinones, S. A.; Gaytan, S. M.; Lopez, M. I.; Rodela, A.; Martinez, E. Y.; Hernandez, D. H.; Martinez, E.; Medina, F. (2009-01-01). "Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications". Journal of the Mechanical Behavior of Biomedical Materials. 2 (1): 20–32. doi:10.1016/j.jmbbm.2008.05.004. PMID 19627804.
  23. Velasco-Ortega, E (Sep 2010). "दंत प्रत्यारोपण के लिए एक वाणिज्यिक टाइटेनियम मिश्र धातु के साइटोटॉक्सिसिटी और जीनोटॉक्सिसिटी का इन विट्रो मूल्यांकन". Mutat. Res. 702 (1): 17–23. doi:10.1016/j.mrgentox.2010.06.013. PMID 20615479.
  24. 24.0 24.1 The fatigue resistance of commercially pure titanium(grade II), titanium alloy (Ti6Al7Nb) and conventional cobalt-chromium cast clasps by Mali Palanuwech; Inaugural-Dissertation zur Erlangung des Doktorgrades der Zahnheilkunde der Medizinschen Fakultät der Eberhard-Karls-Universität zu Tübingenvorgelegt; Munich (2003). Retrieved 8 September 2012
  25. Titanium Alloys – Ti6Al7Nb Properties and Applications. Retrieved 8 September 2012


बाहरी संबंध