4-मैनिफोल्ड

From Vigyanwiki
Revision as of 15:54, 28 February 2023 by alpha>Indicwiki (Created page with "{{Short description|Mathematical space}} गणित में, 4-मैनिफ़ोल्ड एक 4-आयामी टोपोलॉजिकल मैनिफो...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, 4-मैनिफ़ोल्ड एक 4-आयामी टोपोलॉजिकल मैनिफोल्ड है। एक चिकनी 4-कई गुना एक चिकनी संरचना के साथ 4-कई गुना है। आयाम चार में, निचले आयामों के साथ स्पष्ट विपरीतता में, टोपोलॉजिकल और चिकनी मैनिफोल्ड काफी अलग हैं। कुछ टोपोलॉजिकल 4-मैनिफोल्ड मौजूद हैं जो कोई चिकनी संरचना स्वीकार नहीं करते हैं, और यहां तक ​​​​कि अगर कोई चिकनी संरचना मौजूद है, तो यह अद्वितीय नहीं होना चाहिए (यानी चिकनी 4-कई गुना हैं जो होमियोमॉर्फिक हैं लेकिन डिफियोमॉर्फिक नहीं हैं)।

भौतिकी में 4-कई गुना महत्वपूर्ण हैं क्योंकि सामान्य सापेक्षता में, अंतरिक्ष-समय को छद्म-रीमैनियन 4-कई गुना के रूप में प्रतिरूपित किया जाता है।

सामयिक 4-कई गुना

केवल कनेक्टेड कॉम्पैक्ट 4-मैनिफ़ोल्ड का होमोटॉपी प्रकार केवल मध्य आयामी होमोलॉजी पर चौराहे के रूप (4-मैनिफ़ोल्ड) पर निर्भर करता है। का एक प्रसिद्ध प्रमेय है Michael Freedman (1982) का तात्पर्य है कि होमियोमोर्फिज्म प्रकार का मैनिफोल्ड केवल इस प्रतिच्छेदन रूप पर निर्भर करता है, और ए पर इनवेरिएंट को किर्बी-सीबेनमैन इनवेरिएंट कहा जाता है, और इसके अलावा यूनिमॉड्यूलर जाली और किर्बी-सीबेनमैन इनवेरिएंट का हर संयोजन उत्पन्न हो सकता है, सिवाय इसके कि अगर फॉर्म सम है, तो किर्बी-सीबेनमैन इनवेरिएंट को सिग्नेचर/8 (मॉड 2) होना चाहिए।

उदाहरण:

  • विशेष मामले में जब फॉर्म 0 होता है, तो इसका तात्पर्य 4-आयामी स्थलीय पोंकारे अनुमान से है।
  • यदि प्रपत्र E8 जाली है, तो यह कई गुना देता है जिसे E8 कई गुना कहा जाता है, किसी भी साधारण परिसर के लिए कई गुना होमियोमॉर्फिक नहीं।
  • यदि रूप है , किर्बी-सीबेनमैन इनवेरिएंट के आधार पर दो कई गुना हैं: एक 2-आयामी जटिल प्रोजेक्टिव स्पेस है, और दूसरा नकली प्रोजेक्टिव स्पेस है, जिसमें एक ही होमोटोपी प्रकार है लेकिन होमोमोर्फिक नहीं है (और कोई चिकनी संरचना नहीं है)।
  • जब फॉर्म का रैंक लगभग 28 से अधिक होता है, तो यूनिमॉड्यूलर जाली # वर्गीकरण रैंक के साथ बहुत तेज़ी से बढ़ना शुरू हो जाता है, इसलिए बड़ी संख्या में बस जुड़े हुए टोपोलॉजिकल 4-मैनिफ़ोल्ड होते हैं (जिनमें से अधिकांश लगभग कोई दिलचस्पी नहीं लगते हैं) ).

फ्रीडमैन के वर्गीकरण को कुछ मामलों में विस्तारित किया जा सकता है जब मौलिक समूह बहुत जटिल नहीं है; उदाहरण के लिए, जब यह है , के समूह वलय के ऊपर हर्मिटियन रूपों का उपयोग करते हुए उपरोक्त के समान एक वर्गीकरण है . यदि मौलिक समूह बहुत बड़ा है (उदाहरण के लिए, 2 जनरेटर पर एक मुक्त समूह), तो फ्रीडमैन की तकनीकें विफल होने लगती हैं और इस तरह के कई गुना के बारे में बहुत कम जानकारी है।

किसी भी सूक्ष्म रूप से प्रस्तुत समूह के लिए इसके मूलभूत समूह के रूप में एक (चिकनी) कॉम्पैक्ट 4-कई गुना बनाना आसान है। जैसा कि यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो सूक्ष्म रूप से प्रस्तुत किए गए समूह आइसोमोर्फिक हैं (भले ही एक को तुच्छ माना जाता है) यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो 4-मैनिफोल्ड में एक ही मौलिक समूह है। यह एक कारण है कि क्यों 4-मैनिफोल्ड्स पर ज्यादातर काम सिर्फ जुड़े हुए मामले पर विचार करता है: कई समस्याओं का सामान्य मामला पहले से ही अचूक होने के लिए जाना जाता है।

चिकना 4-कई गुना

अधिकतम 6 आयामों के कई गुना के लिए, किसी भी टुकड़े की रैखिक (पीएल) संरचना को अनिवार्य रूप से अद्वितीय तरीके से चिकना किया जा सकता है,[1] इसलिए विशेष रूप से 4 आयामी पीएल कई गुना ्स का सिद्धांत 4 आयामी स्मूथ मैनिफोल्ड्स के सिद्धांत के समान है।

चिकनी 4-कई गुना के सिद्धांत में एक बड़ी खुली समस्या है, बस जुड़े हुए कॉम्पैक्ट वाले को वर्गीकृत करना। जैसा कि टोपोलॉजिकल ज्ञात हैं, यह दो भागों में विभाजित है:

  1. कौन से टोपोलॉजिकल मैनिफोल्ड स्मूथेबल हैं?
  2. विभिन्न चिकनी संरचनाओं को एक सुगम मैनिफोल्ड पर वर्गीकृत करें।

पहली समस्या का लगभग पूर्ण उत्तर है, जिसमें केवल कॉम्पैक्ट 4-मैनिफोल्ड्स से जुड़ी चिकनी संरचनाएं हैं। सबसे पहले, किर्बी-सीबेनमैन वर्ग को गायब होना चाहिए।

  • यदि प्रतिच्छेदन रूप निश्चित रूप से डोनाल्डसन की प्रमेय है (Donaldson 1983) एक पूर्ण उत्तर देता है: एक चिकनी संरचना होती है यदि केवल और यदि प्रपत्र विकर्ण है।
  • यदि रूप अनिश्चित और विषम है तो एक चिकनी संरचना होती है।
  • यदि फॉर्म अनिश्चित है और यहां तक ​​कि हम यह भी मान सकते हैं कि यदि आवश्यक हो तो ओरिएंटेशन को बदलकर यह गैर-सकारात्मक हस्ताक्षर का है, जिस स्थिति में यह II की एम प्रतियों के योग के लिए आइसोमोर्फिक है1,1 और ई की 2 एन प्रतियां8(−1) कुछ m और n के लिए। यदि m ≥ 3n (ताकि आयाम |signature| का कम से कम 11/8 गुना हो) तो एक चिकनी संरचना है, जो n K3 सतहों और S की m − 3n प्रतियों का एक जुड़ा हुआ योग लेकर दी गई है2×एस2</उप>। यदि m ≤ 2n (तो आयाम अधिक से अधिक 10/8 गुना है | हस्ताक्षर |) तो फुरुता ने साबित किया कि कोई चिकनी संरचना मौजूद नहीं है (Furuta 2001). यह 10/8 और 11/8 के बीच एक छोटा सा अंतर छोड़ देता है जहां उत्तर ज्यादातर अज्ञात होता है। (सबसे छोटे मामले में ऊपर कवर नहीं किया गया है n=2 और m=5, लेकिन इसे भी खारिज कर दिया गया है, इसलिए सबसे छोटा जाली जिसके लिए वर्तमान में उत्तर ज्ञात नहीं है, जाली II है7,55 रैंक 62 की n=3 और m=7 के साथ। देखना [2] इस क्षेत्र में हाल ही में (2019 तक) प्रगति के लिए।) 11/8 अनुमान बताता है कि यदि आयाम 11/8 गुना से कम है तो चिकनी संरचनाएं मौजूद नहीं हैं।

इसके विपरीत, चिकनी 4-कई गुना पर चिकनी संरचनाओं को वर्गीकृत करने के दूसरे प्रश्न के बारे में बहुत कम जानकारी है; वास्तव में, वहाँ एक भी चिकना 4-कई गुना नहीं है जहाँ उत्तर ज्ञात हो। डोनाल्डसन ने दिखाया कि कुछ सरल रूप से जुड़े कॉम्पैक्ट 4-कई गुना हैं, जैसे कि डोलगाचेव सतहें, अलग-अलग चिकनी संरचनाओं की अनगिनत अनंत संख्या के साथ। R पर विभिन्न चिकनी संरचनाओं की एक बेशुमार संख्या है4; विदेशी R4 देखें|विदेशी R4</उप>। फिंट्यूशेल और स्टर्न ने दिखाया कि कई अलग-अलग मैनिफोल्ड्स पर बड़ी संख्या में अलग-अलग चिकनी संरचनाओं (मनमानी अभिन्न बहुपदों द्वारा अनुक्रमित) के निर्माण के लिए सर्जरी का उपयोग कैसे किया जाता है, यह दिखाने के लिए कि चिकनी संरचनाएं अलग-अलग हैं। उनके नतीजे बताते हैं कि आसानी से जुड़े चिकनी 4-कई गुना का कोई वर्गीकरण बहुत जटिल होगा। यह वर्गीकरण कैसा दिख सकता है, इसके बारे में वर्तमान में कोई प्रशंसनीय अनुमान नहीं है। (कुछ शुरुआती अनुमान हैं कि सभी आसानी से जुड़े चिकनी 4-कई गुना बीजगणितीय सतहों के जुड़े योग हो सकते हैं, या सिंपलेक्टिक मैनिफोल्ड, संभवतः उलटा झुकाव के साथ, अस्वीकृत कर दिया गया है।)

4 आयामों में विशेष घटनाएं

मैनिफोल्ड्स के बारे में कई मौलिक प्रमेय हैं जो कम से कम 3 आयामों में कम-आयामी विधियों द्वारा और कम से कम 5 आयामों में पूरी तरह से भिन्न उच्च-आयामी विधियों द्वारा सिद्ध किए जा सकते हैं, लेकिन जो आयाम 4 में गलत हैं। यहां कुछ उदाहरण दिए गए हैं:

  • 4 के अलावा अन्य आयामों में, किर्बी-सीबेनमैन अपरिवर्तनीय पीएल संरचना के अस्तित्व में बाधा प्रदान करता है; दूसरे शब्दों में एक कॉम्पैक्ट टोपोलॉजिकल मैनिफोल्ड में पीएल संरचना होती है यदि और केवल अगर एच में किर्बी-सीबेनमैन इनवेरिएंट4(M,'Z'/2'Z') गायब हो जाता है। आयाम 3 और निचले में, प्रत्येक टोपोलॉजिकल मैनिफोल्ड अनिवार्य रूप से अद्वितीय पीएल संरचना को स्वीकार करता है। आयाम 4 में गायब होने वाले किर्बी-सीबेनमैन इनवेरिएंट के कई उदाहरण हैं लेकिन कोई पीएल संरचना नहीं है।
  • 4 के अलावा किसी भी आयाम में, एक कॉम्पैक्ट टोपोलॉजिकल मैनिफोल्ड में अनिवार्य रूप से विशिष्ट पीएल या चिकनी संरचनाओं की केवल एक सीमित संख्या होती है। आयाम 4 में, कॉम्पैक्ट मैनिफोल्ड्स में गैर-डिफियोमॉर्फिक चिकनी संरचनाओं की संख्या अनंत संख्या में हो सकती है।
  • चार ही एकमात्र आयाम n है जिसके लिए 'R'n में आकर्षक चिकनी संरचना हो सकती है। 'आर'4 में विदेशी चिकनी संरचनाओं की एक बेशुमार संख्या है; विदेशी R4 देखें|विदेशी R4</उप>।
  • सुचारू पॉइनकेयर अनुमान का समाधान 4 के अलावा अन्य सभी आयामों में जाना जाता है (यह आमतौर पर कम से कम 7 आयामों में झूठा होता है; विदेशी क्षेत्र देखें)। पीएल मैनिफोल्ड्स के लिए पोंकारे अनुमान 4 के अलावा अन्य सभी आयामों के लिए सिद्ध किया गया है, लेकिन यह ज्ञात नहीं है कि यह 4 आयामों में सच है या नहीं (यह 4 आयामों में चिकनी पोंकारे अनुमान के बराबर है)।
  • सहज एच-कोबोर्डवाद प्रमेय सह-बोर्डवाद के लिए मान्य है, बशर्ते कि न तो सह-बोर्डवाद और न ही इसकी सीमा का आयाम 4 हो। यह विफल हो सकता है यदि सह-बोर्डवाद की सीमा का आयाम 4 हो (जैसा कि साइमन डोनाल्डसन द्वारा दिखाया गया है)।[3] यदि सह-बोर्डवाद का आयाम 4 है, तो यह अज्ञात है कि एच-सह-बोर्डवाद प्रमेय धारण करता है या नहीं।
  • 4 के बराबर नहीं होने वाले आयाम के एक टोपोलॉजिकल मैनिफोल्ड में एक हैंडलबॉडी अपघटन है। डायमेंशन 4 के मैनिफोल्ड्स में एक हैंडलबॉडी अपघटन होता है अगर और केवल अगर वे चिकने हों।
  • कॉम्पैक्ट 4-आयामी टोपोलॉजिकल मैनिफोल्ड हैं जो किसी भी साधारण जटिल के लिए होमोमोर्फिक नहीं हैं। आयाम में कम से कम 5 टोपोलॉजिकल मैनिफोल्ड्स का अस्तित्व एक साधारण जटिल के लिए होमोमोर्फिक नहीं एक खुली समस्या थी। सिप्रियन मनोलेस्कु ने दिखाया कि 5 से अधिक या उसके बराबर प्रत्येक आयाम में कई गुना हैं, जो एक साधारण जटिल के लिए होमोमोर्फिक नहीं हैं।[4]


आयाम 4 == में व्हिटनी चाल की विफलता

फ्रैंक क्विन (गणितज्ञ) के अनुसार, आयाम 2n के कई गुना के दो एन-आयामी सबमनिफोल्ड आमतौर पर अलग-अलग बिंदुओं में खुद को और एक-दूसरे को काटते हैं। व्हिटनी एम्बेडिंग प्रमेय # सबूत के बारे में थोड़ा | व्हिटनी ट्रिक इन चौराहों को सरल बनाने के लिए एक एम्बेडेड 2-डिस्क में एक आइसोटोप का उपयोग करती है। मोटे तौर पर यह 2-डिस्क के एम्बेडिंग के लिए एन-डायमेंशनल एम्बेडिंग के अध्ययन को कम करता है। लेकिन यह कमी नहीं है जब एम्बेडिंग 4 है: 2 डिस्क स्वयं मध्य-आयामी हैं, इसलिए उन्हें एम्बेड करने का प्रयास ठीक उसी समस्या का सामना करता है जिसे वे हल करने वाले हैं। यही वह परिघटना है जो आयाम 4 को दूसरों से अलग करती है।[5]


यह भी देखें

संदर्भ

  1. Milnor, John (2011), "Differential topology forty-six years later" (PDF), Notices of the American Mathematical Society, 58 (6): 804–809, MR 2839925.
  2. Hopkins, Michael J.; Lin, Jianfeng; Shi, XiaoLin; Xu, Zhouli (2019), "Intersection Forms of Spin 4-Manifolds and the Pin(2)-Equivariant Mahowald Invariant", arXiv:1812.04052 [math.AT].
  3. Donaldson, Simon K. (1987). "तर्कहीनता और एच-कोबर्डिज्म अनुमान". J. Differential Geom. 26 (1): 141–168. doi:10.4310/jdg/1214441179. MR 0892034.
  4. Manolescu, Ciprian (2016). "Pin(2)-equivariant Seiberg–Witten Floer homology and the Triangulation Conjecture". J. Amer. Math. Soc. 29: 147–176. arXiv:1303.2354. doi:10.1090/jams829. S2CID 16403004.
  5. Quinn, F. (1996). "Problems in low-dimensional topology". In Ranicki, A.; Yamasaki, M. (eds.). Surgery and Geometric Topology: Proceedings of a conference held at Josai University, Sakado, Sept. 1996 (PDF). pp. 97–104.


बाहरी संबंध