विभाजन फलन (सांख्यिकीय यांत्रिकी)
Statistical mechanics |
---|
भौतिकी में, एक विभाजन फलन ऊष्मागतिकी संतुलन में प्रणाली के सांख्यिकी गुणों का वर्णन करता है। विभाजन कार्य ऊष्मागतिक अवस्था चर के कार्य हैं, जैसे तापमान और आयतन।कुल ऊर्जा, मुक्त ऊर्जा, एन्ट्रॉपी और दबाव जैसे प्रणाली के अधिकांश समग्र ऊष्मागतिकी चर, विभाजन फलन या इसके डेरिवेटिव के संदर्भ में व्यक्त किए जा सकते हैं। तथा विभाजन कार्य आयाम रहित है।
प्रत्येक विभाजन फलन का निर्माण एक विशेष सांख्यिकीय आवरण का प्रतिनिधित्व करने के लिए किया जाता है जो बदले में, एक विशेष ऊष्मागतिकी मुक्त ऊर्जा से मेल खाता है)। सबसे आम सांख्यिकीय समूहों ने विभाजन कार्यों का नाम दिया है। कैनोनिकल विभाजन फलन एक कैनोनिकल समेकन पर लागू होता है, जिसमें प्रणाली को निश्चित तापमान, मात्रा और कणों की संख्या पर पर्यावरण प्रणाली के साथ गर्मी का आदान-प्रदान करने की अनुमति दी जाती है। भव्य विहित विभाजन फलन एक भव्य विहित आवरण पर लागू होता है, जिसमें प्रणाली निश्चित तापमान, मात्रा और रासायनिक क्षमता पर पर्यावरण के साथ गर्मी और कणों दोनों का आदान-प्रदान कर सकता है। अन्य प्रकार के विभाजन कार्यों को विभिन्न परिस्थितियों के लिए परिभाषित किया जा सकता है; सामान्यीकरण के लिए विभाजन फलन देखें। विभाजन फलन के कई भौतिक अर्थ हैं, जैसा कि अर्थ और महत्व में चर्चा की गई है।
विहित विभाजन फलन
परिभाषा
प्रारंभ में, आइए मान लें कि ऊष्मागतिकी रूप से बड़ी प्रणाली पर्यावरण के साथ थर्मल संपर्क में है, तापमान टी के साथ, और प्रणाली की मात्रा और घटक कणों की संख्या दोनों निश्चित हैं। इस तरह की प्रणाली के संग्रह में एक आवरण समिलित होता है जिसे एक विहित आवरण कहा जाता है। विहित विभाजन फलन के लिए उपयुक्त गणितीय अभिव्यक्ति प्रणाली की स्वतंत्रता की डिग्री पर निर्भर करती है, चाहे संदर्भ पारम्परिक यांत्रिकी या क्वांटम यांत्रिकी हो, और चाहे स्थितिों का स्पेक्ट्रम असतत संभाव्यता वितरण या हो
पारम्परिक असतत प्रणाली
पारम्परिक और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
- प्रणाली के सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी) के लिए सूचकांक है;
- is e गणितीय स्थिरांक यूलर की संख्या;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है जहाँ बोल्ट्जमैन स्थिरांक है;
- संबंधित सूक्ष्म अवस्था में प्रणाली की कुल ऊर्जा है।
घातीय फलन कारक अन्यथा बोल्ट्जमान कारक के रूप में जाना जाता है।
विभाजन फलन को प्राप्त करने के लिए कई विधियाँ हैं। निम्नलिखित व्युत्पत्ति अधिक शक्तिशाली और सामान्य सूचना-सैद्धांतिक जेनेसियन अधिकतम एन्ट्रापी विधियों का अनुसरण करती है
ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार, एक प्रणाली उष्मगतिकी संतुलन पर अधिकतम एन्ट्रापी के विन्यास को संदर्भित करती है। हम स्थितियों के संभाव्यता वितरण की तलाश करते हैं
{\displaystyle \rho _{i}} जो असतत गिब्स एन्ट्रॉपी को अधिकतम करता है that maximizes the discrete Gibbs entropy
दो भौतिक बाधाओं के अधीन:
- सभी स्थितियों की संभाव्यताए इकाई मे युग्मित होती है (second axiom of probability):
- विहित समुदाय, में औसत ऊर्जा स्थिर होती है (ऊर्जा संरक्षण):
बाधाओं के साथ परिवर्तनीय गणना को लागू करना (लैग्रेंज गुणनो की विधि के अनुरूप कुछ अर्थों में), हम लैग्रेंजियन (या लैग्रेंज फलन) लिखते हैं as
Varying and extremizing with respect to leads to
Since this equation should hold for any variation , it implies that
Isolating for yields
To obtain , one substitutes the probability into the first constraint:
Isolating for yields .
Rewriting in terms of gives
Rewriting in terms of gives
To obtain , we differentiate with respect to the average energy and apply the first law of thermodynamics, :
Thus the canonical partition function becomes
पारम्परिक सतत प्रणाली
पारम्परिक यांत्रिकी में, एक कण की स्थिति और संवेग चर लगातार भिन्न हो सकते हैं, इसलिए सूक्ष्म अवस्था का समुच्चय वास्तव में अनगिनत समुच्चय है। पारम्परिक सांख्यिकीय यांत्रिकी में, असतत शब्दों के योग (गणित) के रूप में विभाजन कार्य को व्यक्त करना गलत है। इस विषय में हमें एक योग के अतिरिक्त एक अभिन्न का उपयोग करके विभाजन फलन का वर्णन करना चाहिए। पारम्परिक और निरंतर एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
- प्लैंक स्थिरांक है;
- ऊष्मागतिकी बीटा है, जिसे से परिभाषित किया गया है ; प्रणाली का हैमिल्टनियन यांत्रिकी है;
- विहित निर्देशांक है;
- कैननिकल निर्देशांक है।
इसे एक आयाम रहित मात्रा में बनाने के लिए, हमें इसे h से विभाजित करना होगा, जो कि क्रिया की इकाइयों के साथ कुछ मात्रा मे है सामान्यतः इसे प्लैंक स्थिरांक के रूप में लिया जाता है।
पारम्परिक निरंतर प्रणाली (एकाधिक समान कण)
गैस के लिए तीन आयामों में समान पारम्परिक कण, विभाजन कार्य है
- प्लैंक स्थिरांक है;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है ;
- प्रणाली के कणों के लिए सूचक है;
- एक संबंधित कण का हैमिल्टनियन यांत्रिकी है;
- संबंधित कण के विहित निर्देशांक हैं;
- संबंधित कण के विहित निर्देशांक हैं;
- यह इंगित करने के लिए आशुलिपि संकेतन है और त्रि-आयामी अंतरिक्ष में सदिश हैं।
भाज्य कारक N का कारण! नीचे चर्चा की गई है भाजक में अतिरिक्त स्थिर कारक प्रस्तुत किया गया था क्योंकि असतत रूप के विपरीत, ऊपर दिखाया गया निरंतर रूप आयाम रहित नहीं है।,. जैसा कि पिछले खंड में कहा गया है, इसे एक विमा रहित मात्रा में बनाने के लिए, हमें इसे h3N से विभाजित करना होगा जहाँ h को सामान्यतः प्लैंक स्थिरांक के रूप में लिया जाता है।
क्वांटम यांत्रिक असतत प्रणाली
क्वांटम यांत्रिक और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को बोल्ट्जमैन कारक के अवशेष (रैखिक बीजगणित) के रूप में परिभाषित किया गया है:
- मैट्रिक्स काअवशेष (रैखिक बीजगणित) है;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है ;
- हैमिल्टनियन है।
का आयाम प्रणाली की ऊर्जा अवस्थाओ की संख्या है।
क्वांटम यांत्रिक सतत प्रणाली
क्वांटम यांत्रिक और निरंतर एक विहित आवर के लिए, कैनोनिकल विभाजन फलन को इस रूप में परिभाषित किया गया है
- प्लैंक स्थिरांक है;
- ऊष्मागतिकी बीटा है, जिसे ;परिभाषित किया गया है;
- हैमिल्टनियन (क्वांटम यांत्रिकी) है;
- विहित निर्देशांक है;
- विहित निर्देशांक है।
एक ही ऊर्जा ई साझा करने वाले कई क्वांटम स्थितिों वाले प्रणाली मेंs, यह कहा जाता है कि प्रणाली के ऊर्जा स्तर पतित ऊर्जा स्तर हैं। पतित ऊर्जा स्तरों के मामले में, हम विभाजन फलन को ऊर्जा स्तरों से योगदान के संदर्भ में लिख सकते हैं इस प्रकार j द्वारा अनुक्रमित है।
सुसंगत अवस्थाओं के संदर्भ में अवशेष व्यक्त किए जाने पर Z का पारम्परिक रूप पुनः प्राप्त होता है[1]और जब एक कण की स्थिति और संवेग में क्वांटम-यांत्रिक अनिश्चितता सिद्धांत नगण्य माने जाते हैं। औपचारिक रूप से, ब्रा-केट नोटेशन का उपयोग करते हुए, एक स्वतंत्रता की प्रत्येक डिग्री के लिए अवशेष के अंतर्गत पहचान सम्मिलित करता है:
संभाव्यता सिद्धांत से संबंध
सरलता के लिए, हम इस खंड में विभाजन फलन के असतत रूप का उपयोग करेंगे। हमारे परिणाम निरंतर रूप में समान रूप से लागू होंगे।
प्रणाली S पर विचार करें जो ताप कुण्ड B. में सन्निहित है। दोनों प्रणालियों की कुल ऊर्जा E. होने दें। pi को इस संभावना से निरूपित करने दें कि प्रणाली S एक विशेष सूक्ष्म अवस्था में है। i ऊर्जा Ei. के साथ सांख्यिकीय यांत्रिकी के मौलिक अभिधारणा के अनुसार संभाव्यता कुल बंद प्रणाली (S, B) के सूक्ष्म अवस्था की संख्या के व्युत्क्रमानुपाती होगी जिसमें S सूक्ष्म अवस्था i ऊर्जा Ei के साथ समतुल्य रूप से, pi ऊर्जा E − Ei के साथ ताप कुंड B के सूक्ष्म अवस्था की संख्या के समानुपाती होगा:
ऊष्मागतिकी कुल ऊर्जा की गणना
विभाजन फलन की उपयोगिता को प्रदर्शित करने के लिए, आइए हम कुल ऊर्जा के ऊष्मागतिकी मूल्य की गणना करें। यह मात्र अपेक्षित मूल्य है, या ऊर्जा के लिए औसत समेकन है, जो कि उनकी संभावनाओं से भारित सूक्ष्म अवस्था ऊर्जा का योग है:
ऊष्मप्रवैगिकी चर से संबंध
इस खंड में, हम विभाजन फलन और प्रणाली के विभिन्न ऊष्मागतिकी मापदंडों के बीच संबंधों को बताएंगे। ये परिणाम पिछले अनुभाग की विधि और विभिन्न ऊष्मागतिकी संबंधों का उपयोग करके प्राप्त किए जा सकते हैं।
जैसा कि हम पहले ही देख चुके हैं, ऊष्मागतिकी
सब प्रणाली का विभाजन कार्य
मान लीजिए कि एक प्रणाली को नगण्य अंतःक्रियात्मक ऊर्जा के साथ N उप-प्रणालियों में उप-विभाजित किया गया है, अर्थात, हम मान सकते हैं कि कण अनिवार्य रूप से गैर-अंतःक्रियात्मक हैं। यदि उप-प्रणालियों के विभाजन कार्य ζ1, ζ2, ..., ζN, तब संपूर्ण प्रणाली का विभाजन कार्य अलग-अलग विभाजन कार्यों का उत्पाद है।
अर्थ और महत्व
यह स्पष्ट नहीं हो सकता है कि विभाजन कार्य, जैसा कि हमने इसे ऊपर परिभाषित किया है, एक महत्वपूर्ण मात्रा है। सबसे पहले, विचार करें कि इसमें क्या जाता है। विभाजन कार्य तापमान T और सूक्ष्म अवस्था ऊर्जा E1, E2, E3, आदि का एक कार्य है सूक्ष्म अवस्था ऊर्जा अन्य ऊष्मागतिकी चर द्वारा निर्धारित की जाती है, अन्य आंतरिक चक्र चर, जैसे कणों की संख्या और मात्रा, साथ ही सूक्ष्म मात्रा घटक जैसे कणों द्वारा द्रव्यमान निर्धारित किया जाता है। एक प्रणाली के सूक्ष्म घटकों के एक प्रारूप के साथ, कोई सूक्ष्म अवस्था ऊर्जा की गणना कर सकता है, और इस प्रकार विभाजन कार्य कर सकता है, जो हमें प्रणाली के अन्य सभी ऊष्मागतिकी गुणों की गणना करने की अनुमति देगा।
विभाजन फलन ऊष्मागतिकी गुणों से संबंधित हो सकता है क्योंकि इसका एक बहुत ही महत्वपूर्ण सांख्यिकीय अर्थ है। प्रायिकता Ps कि प्रणाली सूक्ष्म अवस्था S पर अधिकार कर लेता है।
Z को "विभाजन फलन" कहने का कारण है की यह कूटबद्ध करता है कि अलग-अलग सूक्ष्म अवस्था के बीच उनकी व्यक्तिगत ऊर्जा के आधार पर संभावनाओं को कैसे विभाजित किया जाता है। अलग-अलग समेकन के लिए अन्य विभाजन कार्य अन्य मैक्रोस्टेट चर के आधार पर संभावनाओं को विभाजित करते हैं। एक उदाहरण के रूप में: इज़ोटेर्मल-आइसोबैरिक आवरण के लिए विभाजन फलन बोल्ट्जमैन वितरण सामान्यीकृत बोल्ट्जमैन वितरण, कण संख्या, दबाव और तापमान के आधार पर संभावनाओं को विभाजित करता है। और ऊर्जा को उस आवरण, गिब्स मुफ़्त क्षमता की विशिष्ट क्षमता से बदल दिया जाता है। Z अक्षर जर्मन भाषा के शब्द ज़स्तन्दसुम्मे के "सम ओवर स्टेट्स" से है। विभाजन फलन की उपयोगिता इस तथ्य से उत्पन्न होती है कि किसी प्रणाली की सूक्ष्मदर्शीय ऊष्मागतिकीय की मात्रा उसके सूक्ष्म विवरण से उसके विभाजन फलन के व्युत्पन्न के माध्यम से संबंधित हो सकती है। विभाजन फलन उपलब्धि भी ऊर्जा क्षेत्र से β क्षेत्र के लिए स्थिति फलन के घनत्व के लाप्लास परिवर्तन करने के बराबर है, और विभाजन फलन के व्युत्क्रम लाप्लास परिवर्तन ऊर्जा के स्थिति घनत्व फलन को पुनः प्राप्त करता है।
भव्य विहित विभाजन फलन
हम एक भव्य विहित विभाजन फलन को एक भव्य विहित आवरण के लिए परिभाषित कर सकते हैं, जो एक स्थिर-आयतन प्रणाली के आँकड़ों का वर्णन करता है जो एक जलाशय के साथ गर्मी और कणों दोनों का आदान-प्रदान कर सकता है। जलाशय में एक स्थिर तापमान T और एक रासायनिक क्षमता μ होती है।
भव्य विहित विभाजन फलन, द्वारा दर्शाया गया , सूक्ष्म अवस्था सांख्यिकीय यांत्रिकी पर निम्नलिखित योग है
- ---
यहां, प्रत्येक सूक्ष्म अवस्था द्वारा चिह्नित किया गया है और कुल कण संख्या और कुल ऊर्जा . है यह विभाजन कार्य भव्य क्षमता से निकटता से संबंधित है,
इसे उपरोक्त विहित विभाजन फलन से अलग किया जा सकता है, जो हेल्महोल्ट्ज़ मुक्त ऊर्जा के अतिरिक्त संबंधित है।
यह ध्यान रखना महत्वपूर्ण है कि भव्य विहित आवरण में सूक्ष्म अवस्था की संख्या विहित आवरण के सापेक्ष में बहुत बड़ी हो सकती है, क्योंकि यहां हम न केवल ऊर्जा में बल्कि कण संख्या में भी भिन्नता पर विचार करते हैं। पुनः भव्य विहित विभाजन फलन की उपयोगिता यह है कि यह संभावना से संबंधित है कि प्रणाली स्थिति में है
ग्रैंड कैनोनिकल आवरण का एक महत्वपूर्ण अनुप्रयोग एक गैर-अंतःक्रियात्मक कई-निकाय क्वांटम गैस (फर्मी-डायराक सांख्यिकी के लिए फर्मी, बोस-आइंस्टीन सांख्यिकी बोसोन के लिए) के आंकड़ों को प्राप्त करने में है, हालांकि यह उससे कहीं अधिक आम तौर पर लागू होता है। ग्रैंड कैनोनिकल आवरण का उपयोग पारम्परिक प्रणालियों का वर्णन करने के लिए भी किया जा सकता है, या यहां तक कि क्वांटम गैसों के साथ बातचीत भी की जा सकती है।
भव्य विभाजन फलन कभी-कभी वैकल्पिक चर के संदर्भ में (समतुल्य) लिखा जाता है[2]
कहाँ पूर्ण गतिविधि (रसायन विज्ञान) (या भगो-ड़ापन) के रूप में जाना जाता है और विहित विभाजन कार्य है।
यह भी देखें
- विभाजन फलन (गणित)
- विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत)
- वायरल प्रमेय
- विडोम सम्मिलन विधि
संदर्भ
- ↑ Klauder, John R.; Skagerstam, Bo-Sture (1985). Coherent States: Applications in Physics and Mathematical Physics. World Scientific. pp. 71–73. ISBN 978-9971-966-52-2.
- ↑ Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press Inc. ISBN 9780120831807.
- Huang, Kerson (1967). Statistical Mechanics. New York: John Wiley & Sons. ISBN 0-471-81518-7.
- Isihara, A. (1971). Statistical Physics. New York: Academic Press. ISBN 0-12-374650-7.
- Kelly, James J. (2002). "Ideal Quantum Gases" (PDF). Lecture notes.
- Landau, L. D.; Lifshitz, E. M. (1996). Statistical Physics. Part 1 (3rd ed.). Oxford: Butterworth-Heinemann. ISBN 0-08-023039-3.
- Vu-Quoc, L. (2008). "Configuration integral (statistical mechanics)". Archived from the original on April 28, 2012.