द्विपद सन्निकटन

From Vigyanwiki
Revision as of 21:49, 25 March 2023 by alpha>Shubham




द्विपद सन्निकटन 1 और एक छोटी संख्या x की राशियों के लगभग घातांक की गणना के लिए उपयोगी है। यह प्रकट करता है की

यह कब मान्य है और कहाँ और वास्तविक संख्या या सम्मिश्र संख्या हो सकती है।

इस सन्निकटन का लाभ यह है कि एक घातांक से एक गुणक कारक में परिवर्तित हो जाता है। यह गणितीय अभिव्यक्तियों को बहुत सरल कर सकता है (जैसा कि #उदाहरण में है) और भौतिकी में एक सामान्य उपकरण है।[1] सन्निकटन को कई तरीकों से सिद्ध किया जा सकता है, और यह द्विपद प्रमेय से निकटता से संबंधित है। बर्नौली की असमानता से, सन्निकटन का बायाँ भाग दाएँ पक्ष से अधिक या उसके बराबर होता है जब भी और .

व्युत्पत्ति

रैखिक सन्निकटन का प्रयोग

कार्यक्रम

0 के पास x के लिए एक सहज कार्य है। इस प्रकार, कलन से मानक रैखिक सन्निकटन उपकरण लागू होते हैं: एक है

इसलिए

इस प्रकार

टेलर के प्रमेय द्वारा, इस सन्निकटन में त्रुटि के बराबर है के कुछ मूल्य के लिए जो 0 और के बीच होता है x. उदाहरण के लिए, यदि और त्रुटि अधिकतम है . बिग ओ नोटेशन में, कोई कह सकता है कि एरर है , मतलब है कि .

टेलर श्रृंखला का उपयोग

कार्यक्रम

कहाँ और वास्तविक या जटिल हो सकता है जिसे बिंदु शून्य के बारे में टेलर श्रृंखला के रूप में व्यक्त किया जा सकता है।

अगर और , तब शृंखला में पद उत्तरोत्तर छोटे होते जाते हैं और इसे छोटा किया जा सकता है

उपरोक्त टेलर श्रृंखला से अतिरिक्त शर्तों को रखकर द्विपद सन्निकटन के इस परिणाम को हमेशा सुधारा जा सकता है। यह विशेष रूप से महत्वपूर्ण है जब एक के पास जाना शुरू करता है, या एक अधिक जटिल अभिव्यक्ति का मूल्यांकन करते समय जहां टेलर श्रृंखला में पहले दो शब्द रद्द हो जाते हैं (#क्वाड्रैटिक उदाहरण)।

कभी-कभी यह गलत दावा किया जाता है द्विपद सन्निकटन के लिए पर्याप्त स्थिति है। एक साधारण प्रति उदाहरण देना है और . इस मामले में लेकिन द्विपद सन्निकटन पैदावार . छोटे के लिए लेकिन बड़ा , एक बेहतर सन्निकटन है:


उदाहरण

वर्गमूल के लिए द्विपद सन्निकटन, , निम्नलिखित अभिव्यक्ति के लिए लागू किया जा सकता है,

कहाँ और असली हैं लेकिन .

द्विपद सन्निकटन के लिए गणितीय रूप को बड़ी अवधि को फैक्टर करके पुनर्प्राप्त किया जा सकता है और यह याद रखना कि एक वर्गमूल आधे की घात के बराबर होता है।

जाहिर है अभिव्यक्ति रैखिक है कब जो अन्यथा मूल अभिव्यक्ति से स्पष्ट नहीं है।

सामान्यीकरण

जबकि द्विपद सन्निकटन रैखिक है, इसे टेलर श्रृंखला में द्विघात शब्द रखने के लिए सामान्यीकृत किया जा सकता है:

वर्गमूल पर लागू होने पर, इसका परिणाम होता है:


द्विघात उदाहरण

अभिव्यक्ति पर विचार करें:

कहाँ और . यदि द्विपद सन्निकटन से केवल रैखिक शब्द रखा जाता है तो अभिव्यक्ति बेकार ढंग से शून्य तक सरल हो जाती है

जबकि व्यंजक छोटा है, यह बिल्कुल शून्य नहीं है। तो अब, द्विघात शब्द रखते हुए:

यह परिणाम द्विघात में है यही कारण है कि यह तब प्रकट नहीं हुआ जब केवल रेखीय पदों में रखा गया था।

संदर्भ

  1. For example calculating the multipole expansion. Griffiths, D. (1999). Introduction to Electrodynamics (Third ed.). Pearson Education, Inc. pp. 146–148.