विल्बरफोर्स लोलक

From Vigyanwiki
एक विल्बरफोर्स लोलक दो दोलन मोड के बीच प्रत्यावर्ती होता है।

विल्बरफोर्स लोलक, जिसका आविष्कार ब्रिटिश भौतिक विज्ञानी लियोनेल रॉबर्ट विल्बरफोर्स[1] ने 1896 के आसपास किया था, इसमें द्रव्यमान होता है जो लंबे कुंडलित स्प्रिंग द्वारा निलंबित होता है और स्प्रिंग को घुमाते हुए अपने ऊर्ध्वाधर अक्ष पर मुड़ने के लिए स्वतंत्र होता है। यह युग्मित यांत्रिक दोलक का एक उदाहरण है, जिसे प्रायः भौतिकी शिक्षा में स्पष्टीकरण के रूप में उपयोग किया जाता है। द्रव्यमान स्प्रिंग पर ऊपर और नीचे दोनों तरह से उछल सकता है, और मरोड़ वाले कंपन के साथ अपने ऊर्ध्वाधर अक्ष के चारों ओर आगे और पीछे घूम सकता है। जब सही ढंग से समायोजित और गति में सेट किया जाता है, तो यह असामान्य गति प्रदर्शित करता है जिसमें विशुद्ध रूप से घूर्णी दोलन की अवधि धीरे-धीरे विशुद्ध रूप से ऊपर और नीचे दोलन की अवधि के साथ प्रत्यावर्ती होती है। उपकरण में संग्रहित ऊर्जा घूर्णी 'ऊपर और नीचे' दोलन मोड और मरोड़ 'दक्षिणावर्त और वामावर्त' दोलन मोड के बीच धीरे-धीरे आगे-पीछे होती है, जब तक कि गति अंततः समाप्त नहीं हो जाती है।[2]

नाम के बावजूद, सामान्य संचालन में यह सामान्य लोलक की तरह आगे पीछे नहीं झूलता है। द्रव्यमान में प्रायः क्षैतिज रूप से चिपके हुए त्रिज्यीय 'आर्म्स' के जोड़े का विरोध होता है, जो छोटे वज़न के साथ पिरोया जाता है जिसे मरोड़ वाले कंपन अवधि को 'ट्यून' करने के लिए जड़त्व के क्षण को समायोजित करने के लिए अंदर या बाहर पेंच किया जा सकता है।

व्याख्या

विल्बरफोर्स लोलक, 1908

स्प्रिंग की ज्यामिति के कारण, उपकरण का पेचीदा व्यवहार दो गतियों या स्वतंत्रता की कोटि के बीच साधारण युग्मन के कारण होता है। जब वजन ऊपर और नीचे हो रहा होता है, स्प्रिंग के प्रत्येक नीचे की ओर भ्रमण के कारण यह थोड़ा सा खुल जाता है, जिससे वजन में हल्का सा मोड़ आ जाता है। जब वजन बढ़ता है, तो यह स्प्रिंग को वायु में थोड़ा सख्त कर देता है, जिससे वजन दूसरी दिशा में थोड़ा सा मुड़ जाता है। इसलिए जब वजन ऊपर और नीचे जा रहा होता है, तो प्रत्येक दोलन वजन को साधारण प्रत्यावर्ती घूर्णी आघूर्ण बल देता है। धीरे-धीरे ऊपर और नीचे की गति कम हो जाती है, और घूर्णी गति अधिक हो जाती है, जब तक कि वजन केवल घूम रहा हो और हिलता नहीं है।

इसी तरह, जब वजन आगे और पीछे घूम रहा होता है, तो वजन का प्रत्येक मोड़ उस दिशा में होता है जो स्प्रिंग को खोलता है, स्प्रिंग के तनाव को थोड़ा कम करता है, जिससे वजन थोड़ा कम हो जाता है। इसके विपरीत, स्प्रिंग को कसने की दिशा में वजन के प्रत्येक मोड़ से तनाव बढ़ जाता है, वजन थोड़ा ऊपर खींच जाता है। तो आगे और पीछे वजन का प्रत्येक दोलन इसे और अधिक ऊपर और नीचे उछालने का कारण बनता है, जब तक कि सभी ऊर्जा घूर्णी मोड से घूर्णी मोड में वापस स्थानांतरित नहीं हो जाती है और यह केवल ऊपर और नीचे घूम रही है, घूर्णन नहीं कर रही है।

विल्बरफोर्स लोलक को स्प्रिंग-द्रव्यमान दोलक fT के हार्मोनिक दोलनों की आवृत्ति को लगभग समान करके डिज़ाइन किया जा सकता है, जो स्प्रिंग के स्प्रिंग स्थिरांक k और प्रणाली के द्रव्यमान m पर निर्भर है, और घूर्णन दोलित्र fR की आवृत्ति, जो जड़त्व आघूर्ण I और प्रणाली के मरोड़ गुणांक κ पर निर्भर है।[3]

Wilberforce pendulum with wooden central mass.
समायोज्य द्रव्यमान के साथ एक लकड़ी का विल्बरफोर्स लोलक।

लोलक प्रायः fR को संशोधित करने के लिए प्रत्येक पक्ष पर समान मात्रा में द्रव्यमान के केंद्र की ओर या उससे दूर जड़त्व आघूर्ण समायोजन भार को स्थानांतरित करके समायोजित किया जाता है, जब तक कि घूर्णी आवृत्ति अनुवाद आवृत्ति के समीप न हो, इसलिए प्रत्यावर्तन अवधि इतनी धीमी होगी कि दो मोड के बीच परिवर्तन को स्पष्ट रूप से देखा जा सके।

प्रत्यावर्तन या 'विस्पंद' आवृत्ति

जिस आवृत्ति पर दो मोड प्रत्यावर्ती होते हैं, वह मोड के दोलन आवृत्तियों के बीच के अंतर के बराबर होता है। दो गतियां आवृत्ति में जितनी निकट होंगी, उनके बीच प्रत्यावर्तन उतना ही धीमा होगा। यह व्यवहार, सभी युग्मित दोलकों के लिए सामान्य है, संगीत वाद्ययंत्रों में विस्पंदों की घटना के अनुरूप है, जिसमें दो स्वर अपनी आवृत्तियों के बीच के अंतर पर 'विस्पंद' स्वर उत्पन्न करने के लिए संयोजित होते हैं।[4] उदाहरण के लिए, यदि लोलक fT = 4 Hz की दर से ऊपर और नीचे उछलता है, और fR = 4.1 Hz की दर से अपनी धुरी पर आगे और पीछे घूमता है, तो प्रत्यावर्तन दर falt होगी-

तो गति 5 सेकंड में घूर्णी से स्थानान्तरण में बदल जाएगी और फिर अगले 5 सेकंड में वापस घूर्णी हो जाएगी। यदि दो आवृत्तियों बिल्कुल समान हैं, तो विस्पंद आवृत्ति शून्य होगी, और अनुनाद उत्पन्न होगा।[4]

संदर्भ

  1. Wilberforce, Lionel Robert (1896). "On the vibrations of a loaded spiral spring". Philosophical Magazine. 38: 386–392. doi:10.1080/14786449408620648. Retrieved 2008-01-09.
  2. Berg, Richard E.; Marshall, Todd S. (May 4, 1990). "Wilberforce pendulum oscillations and normal modes" (PDF). American Journal of Physics. 59 (1): 32–37. doi:10.1119/1.16702. Retrieved 2008-05-03.
  3. Mewes, Matthew (2014-03-01). "The Slinky Wilberforce pendulum: A simple coupled oscillator". American Journal of Physics. 82 (3): 254–256. doi:10.1119/1.4832196. ISSN 0002-9505.
  4. 4.0 4.1 Wen, Qinghao; Yang, Liu (2021-11-01). "विल्बरफोर्स पेंडुलम का सैद्धांतिक और प्रायोगिक अध्ययन". European Journal of Physics. 42 (6): 064002. doi:10.1088/1361-6404/ac2881. ISSN 0143-0807. S2CID 239047624.

बाहरी संबंध