अभिवहन

From Vigyanwiki
Revision as of 11:20, 21 April 2023 by Indicwiki (talk | contribs) (11 revisions imported from alpha:अभिवहन)

भौतिकी, अभियांत्रिकी और पृथ्वी विज्ञान के क्षेत्र में, अभिवहन तरल पदार्थ की थोक गति द्वारा पदार्थ या मात्रा का परिवहन है। उस पदार्थ के गुण उसके साथ चलते हैं। सामान्यतः बहुसंख्यक पदार्थ भी तरल पदार्थ होता है। जिन गुणों को संवर्धित पदार्थ के साथ किया जाता है। वह ऊर्जा गुणों जैसे ऊर्जा का संरक्षण करते हैं। अभिवहन का उदाहरण नदी में प्रदूषकों या गाद का भारी मात्रा में जल प्रवाह द्वारा नीचे की ओर ले जाना है। अन्य सामान्य रूप से स्वीकृत मात्रा ऊर्जा या तापीय धारिता है। यहाँ द्रव कोई भी पदार्थ हो सकता है। जिसमें तापीय ऊर्जा होती है। जैसे जल या हवा सामान्यतः किसी भी पदार्थ या संरक्षित, गहन और व्यापक गुण की मात्रा को द्रव द्वारा ग्रहण किया जा सकता है। जो मात्रा या पदार्थ को धारण या समाहित कर सकता है।

अभिवहन के समय द्रव थोक गति के माध्यम से कुछ संरक्षित मात्रा या सामग्री का परिवहन करता है। इस प्रकार द्रव की गति को गणितीय रूप से सदिश क्षेत्र में वर्णित किया गया है और परिवहन की गई सामग्री को अदिश क्षेत्र द्वारा वर्णित किया गया है। जो अंतरिक्ष में इसके वितरण को दर्शाता है। अभिवहन के लिए द्रव में धाराओं की आवश्यकता होती है और ऐसा कठोर ठोस पदार्थों में नहीं हो सकता है। इसमें आणविक प्रसार द्वारा पदार्थों का परिवहन सम्मिलित नहीं है।

अभिवहन को कभी-कभी अभिवहन की अधिक व्यापक प्रक्रिया के साथ भ्रमित किया जाता है जो कि अभिवहन परिवहन और विसारक परिवहन का संयोजन है।

मौसम विज्ञान और भौतिक समुद्र विज्ञान में अभिवहन अधिकांशतः वातावरण या महासागर की कुछ संपत्ति के परिवहन को संदर्भित करता है। जैसे ऊष्मा, आर्द्रता (जल वाष्प देखें) या लवणता इत्यादि। इस प्रकार हाइड्रोलॉजिकल चक्र के भाग के रूप में भौगोलिक बादलों के निर्माण और बादलों से जल की वर्षा के लिए अभिवहन महत्वपूर्ण है।

अभिवहन और संवहन के मध्य का अंतर

अभिवहन शब्द अधिकांशतः अभिवहन के पर्याय के रूप में कार्य करता है और शब्दों का यह पत्राचार साहित्य में प्रयोग किया जाता है। अतः अधिक विधिक रूप से अभिवहन द्रव के संचलन पर प्रयुक्त होता है। (अधिकांशतः तापीय प्रवणताओं द्वारा निर्मित घनत्व प्रवणताओं के कारण) जबकि अभिवहन द्रव के वेग द्वारा कुछ सामग्री का संचलन है। इस प्रकार यह भ्रामक लग सकता है। विधिक रूप से यह सोचना सही है कि नेवियर-स्टोक्स समीकरणों में वेग क्षेत्र द्वारा संवेग को बढ़ावा दिया जा रहा है। चूंकि परिणामी गति को अभिवहन माना जाता है। थर्मल ग्रेडियेंट के साथ परिवहन को इंगित करने के लिए अभिवहन शब्द के विशिष्ट उपयोग के कारण होता है। यदि कोई अनिश्चित है कि कौन सी शब्दावली उनके विशेष प्रणाली का सबसे अच्छा वर्णन करती है तब शब्द अभिवहन का उपयोग करना संभवतः सुरक्षित है।

मौसम विज्ञान

मौसम विज्ञान और भौतिक समुद्र विज्ञान में अभिवहन अधिकांशतः वायुमंडल या महासागर की कुछ संपत्ति के क्षैतिज परिवहन को संदर्भित करता है। जैसे कि ऊष्मा, आर्द्रता या लवणता और अभिवहन सामान्यतः ऊर्ध्वाधर परिवहन (ऊर्ध्वाधर अभिवहन) को संदर्भित करता है। इस प्रकार हाइड्रोलॉजिकल चक्र के भाग के रूप में ऑरोग्राफिक बादलों (इलाके-मजबूर अभिवहन) और बादलों से जल की वर्षा के गठन के लिए अभिवहन महत्वपूर्ण है।

अन्य मात्रा

अभिवहन समीकरण तब भी प्रयुक्त होता है। जब प्रत्येक बिंदु पर संभाव्यता घनत्व फ़ंक्शन द्वारा प्रदर्शित की जाने वाली मात्रा का प्रतिनिधित्व किया जाता है। चूंकि प्रसार के लिए लेखांकन अधिक कठिन होता है।[1]

अभिवहन का गणित

अभिवहन समीकरण आंशिक अंतर समीकरण है। जो संरक्षित अदिश क्षेत्र की गति को नियंत्रित करता है। जिससे कि यह ज्ञात वेग क्षेत्र द्वारा संचालित होता है। यह अदिश क्षेत्र के संरक्षण कानून का उपयोग करके गॉस के प्रमेय के साथ और अतिसूक्ष्म सीमा को लेकर प्राप्त किया गया है।

अभिवहन को सरलता से देखा जाने वाला उदाहरण नदी में फेंकी गई स्याही का परिवहन है। जैसे ही नदी बहती है स्याही अभिवहन के माध्यम से नाड़ी में नीचे की ओर जाती है। जिससे कि जल की गति ही स्याही को स्थानांतरित करती है। यदि महत्वपूर्ण मात्रा में जल प्रवाह के बिना झील में जोड़ा जाता है। तब स्याही अपने स्रोत से प्रसार विधि से बाहर की ओर फैल जाती है। अतः जो अभिवहन नहीं है। ध्यान दीजिए कि जैसे-जैसे यह नीचे की ओर बढ़ता है। इस प्रकार स्याही की नब्ज भी विसरण के माध्यम से फैलती है। इन प्रक्रियाओं के योग को अभिवहन कहा जाता है।

अभिवहन समीकरण

कार्तीय निर्देशांक में अभिवहन संचालक (गणित) है।

जहाँ वेग क्षेत्र है और डेल ऑपरेटर है। (ध्यान दें कि कार्टेशियन समन्वय प्रणाली यहां उपयोग की जाती है।)

अदिश क्षेत्र द्वारा वर्णित संरक्षित मात्रा के लिए अभिवहन समीकरण निरंतरता समीकरण द्वारा गणितीय रूप से व्यक्त किया जाता है।

जहाँ विचलन ऑपरेटर है और फिर से वेग सदिश क्षेत्र है। अधिकांशतः यह माना जाता है कि प्रवाह असंपीड्य प्रवाह है अर्थात वेग क्षेत्र संतुष्ट करता है।

इस स्थिति में, परिनालिका कहा जाता है। यदि ऐसा है तब उपरोक्त समीकरण को इस रूप में फिर से लिखा जा सकता है।

विशेष रूप से यदि प्रवाह स्थिर है। तब,

जो दर्शाता है स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन के साथ स्थिर है।

यदि सदिश मात्रा (जैसे चुंबकीय क्षेत्र) परिनालिका वेग क्षेत्र द्वारा संचालित किया जा रहा है। अतः ऊपर अभिवहन समीकरण बन जाता है।

यहाँ, अदिश क्षेत्र के अतिरिक्त सदिश क्षेत्र है।

समीकरण को हल करना

अभिवहन समीकरण का अनुकरण जहां u = (sin t, cos t) परिनालिका है।

अभिवहन समीकरण संख्यात्मक विश्लेषण को हल करने के लिए सरल नहीं है। इस प्रकार प्रणाली अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण है और ब्याज सामान्यतः निरंतर कार्य "सदमे" समाधानों पर केंद्रित होता है। (जो संख्यात्मक योजनाओं को संभालने के लिए कुख्यात हैं।)

यहां तक ​​कि अंतरिक्ष आयाम और निरंतर वेग क्षेत्र के साथ प्रणाली को अनुकरण करना कठिन रहता है। इस प्रकार यह समीकरण बन जाता है।

जहाँ अदिश क्षेत्र का विज्ञापन किया जा रहा है और है, सदिश का घटक है।

असंपीड्य नेवियर-स्टोक्स समीकरणों में एडवेक्शन ऑपरेटर का उपचार

ज़ैंग के अनुसार,[2] अभिवहन ऑपरेटर के लिए तिरछा-सममित रूप पर विचार करके संख्यात्मक अनुकरण की सहायता की जा सकती है।

जहाँ
और ऊपर जैसा ही है।

चूंकि तिरछा समरूपता केवल काल्पनिक संख्या ईजेनवैल्यू ​​​​का दर्शाता है। इस प्रकार यह फॉर्म "विस्फोट" और "वर्णक्रमीय अवरोधन" को कम करता है जो अधिकांशतः तीव्र विच्छिन्नता के साथ संख्यात्मक समाधानों में अनुभव किया जाता है। (बॉयड देखें)[3]

सदिश कलन पहचानों का उपयोग करते हुए इन ऑपरेटरों को अन्य विधियों से भी व्यक्त किया जा सकता है जो अधिक समन्वय प्रणालियों के लिए अधिक सॉफ्टवेयर पैकेजों में उपलब्ध है।

यह प्रपत्र यह भी स्पष्ट करता है कि तिरछा-सममित ऑपरेटर वेग क्षेत्र विचलन करते समय त्रुटि प्रस्तुत करता है। इस प्रकार संख्यात्मक विधियों द्वारा अभिवहन समीकरण को हल करना बहुत ही चुनौतीपूर्ण है और इसके बारे में बड़ा वैज्ञानिक साहित्य है।

यह भी देखें

संदर्भ

  1. Yin, C.; Kareem, A. (2014). "Probability advection for stochastic dynamic systems. Part I: Theory". In Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M. (eds.). संरचनाओं और अवसंरचनाओं की सुरक्षा, विश्वसनीयता, जोखिम और जीवन-चक्र प्रदर्शन. CRC Press. pp. 1149–1156. ISBN 978-1-138-00086-5.
  2. Zang, Thomas (1991). "On the rotation and skew-symmetric forms for incompressible flow simulations". Applied Numerical Mathematics. 7: 27–40. Bibcode:1991ApNM....7...27Z. doi:10.1016/0168-9274(91)90102-6.
  3. Boyd, John P. (2000). Chebyshev and Fourier Spectral Methods 2nd edition. Dover. p. 213.