गामा-रे खगोल विज्ञान

From Vigyanwiki
Revision as of 14:36, 25 April 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

पांच साल के अवलोकन (2009 से 2013) में फर्मी गामा-रे स्पेस टेलीस्कोप द्वारा एकत्रित 1 GeV से ऊपर की ऊर्जा पर आकाश का सर्वेक्षण।
कॉम्पटन गामा रे वेधशाला (सीजीआरओ) उपग्रह (1991-2000) के ऊर्जावान गामा रे प्रयोग टेलीस्कोप (ईजीआरईटी) द्वारा देखे गए 100 मेव से ऊपर की ऊर्जा पर आकाश।
20 MeV से अधिक की गामा किरणों में ऊर्जावान गामा किरण प्रयोग टेलीस्कोप (EGRET) द्वारा देखा गया चंद्रमा। ये इसकी सतह पर ब्रह्मांडीय किरण बमबारी द्वारा निर्मित होते हैं।[1]

गामा किरण खगोल विज्ञान में गामा किरणों का खगोलीय अवलोकन है [nb 1] जबकि विद्युत चुम्बकीय विकिरण का सबसे ऊर्जावान रूप विद्युतीय विभवान्तर से ऊपर फोटॉन ऊर्जा के साथ 100 किलोवाट से नीचे के विकिरण को एक्स-रे के रूप में वर्गीकृत किया गया है और यह एक्स-रे खगोल विज्ञान का विषय है

सौर मंडल विकिरण में गामा किरणें सौर उत्तेजन द्वारा भी उत्पन्न की जा सकती हैं इसमें यह माना जाता था कि भावित गामा किरणें सौर मंडल में उत्पन्न नहीं होती हैं चूंकि जीईवी गामा किरणें अतिरिक्त-सौर और विशेष रूप से अतिरिक्त खगोल विज्ञान के अध्ययन में महत्वपूर्ण हैं इसलिए नए अवलोकन कुछ पूर्व प्रारूप और निष्कर्षों को जटिल बना सकते हैं [2][3]गामा किरणों का उत्सर्जन करने वाली क्रियाविधि विविध हैं अधिकतर एक्स-रे उत्सर्जित करने वालों के समान हैं लेकिन उच्च ऊर्जा जिसमें अनुमन्य धन आवेश युक्त कण व्युत्क्रम प्रभाव और कुछ जगहों जैसे अंतरिक्ष में रेडियोधर्मी क्षय भी सम्मिलित हैं [4] सुपरनोवा और हाइपरनोवा जैसी चरम घटनाओं और अत्यधिक परिस्थितियों में पदार्थ के व्यवहार को दर्शाता है

प्रारंभिक इतिहास

ब्रह्मांडीय स्रोतों द्वारा उत्सर्जित गामा किरणों का पता लगाने से बहुत पहले वैज्ञानिकों को पता था कि ब्रह्मांड उन्हें उत्पन्न कर रहा होगा 1948 में यूजीन फीनबर्ग और हेनरी प्रिमाकॉफ़ द्वारा कार्य सचियो हयाकावा और आई.बी. 1952 में हचिंसन और विशेष रूप से 1958 में फिलिप मॉरिसन[5] वैज्ञानिकों को यह विश्वास करने के लिए प्रेरित किया था कि ब्रह्मांड में होने वाली कई अलग-अलग प्रक्रियाओं के परिणामस्वरूप गामा-रे उत्सर्जन होगा तथा इन प्रक्रियाओं में सुपरनोवा विस्फोटक और चुंबकीय क्षेत्र में खगोल विज्ञान तब तक विकसित नहीं हो सकता जब तक इसमें गुब्बारों और अंतरिक्ष यान का उपयोग करके भी अधिकांश वायुमंडल के संसूचकों को प्राप्त करना संभव नहीं था 1961 में एक्सप्लोरर 11 उपग्रह पर पहली गामा-किरण दूरबीन को कक्षा में ले जाया गया जिसने 100 से कम ब्रम्हांडीय गामा-किरण फोटॉनों को ग्रहण किया ऐसा प्रतीत होता है कि वे ब्रह्मांड में सभी दिशाओं से आए हैं जिसका अर्थ है एक समान गामा-किरण पृष्ठभूमि के साथ किरणों की परस्पर क्रिया से ऐसी पृष्ठभूमि की आशा की जा सकती है।

पहला सच्चा खगोल भौतिकीय गामा-किरण स्रोत सौर ज्वालाएं थीं जिसने मॉरिसन द्वारा अनुमानित 2.223 पंक्ति का खुलासा किया यह रेखा एक न्यूट्रॉन और प्रोटॉन के मिलन के माध्यम से भारी उद्जन के निर्माण से उत्पन्न होती है एक सौर चमक में न्यूट्रॉन की प्रक्रिया में त्वरित उच्च-ऊर्जा आयनों की बातचीत से यह द्वितीयक के रूप में दिखाई देते हैं ये पहली गामा-किरण रेखा अवलोकन ओएसओ 3, ओएसओ 7 और सौर अधिकतम मिशन 1980 में प्रारम्भ किए गए सौर अवलोकनों ने रेवेन रामाती और अन्य लोगों द्वारा सैद्धांतिक कार्य को प्रेरित किया[6]हमारी आकाश गंगा से महत्वपूर्ण गामा-रे उत्सर्जन का पहली बार पता 1967 में चला था[7] ओएसओ तीन उपग्रह पर स्थित संसूचक द्वारा इसने ब्रह्मांडीय गामा किरणों के कारण 621 घटनाओं का पता लगाया जबकि गामा-रे खगोल विज्ञान के क्षेत्र ने लघु खगोल विज्ञान उपग्रह 2 एसएएस-2 1972 और कॉस-बी 1975-1982 उपग्रहों के साथ बड़ी छलांग लगाई इन दो उपग्रहों ने उच्च-ऊर्जा ब्रह्मांड में एक रोमांचक दृश्य प्रदान किया क्योंकि गामा किरणें उत्पन्न करने वाली घटनाओं के प्रकार उच्च-गति टकराव और समान प्रक्रियाएँ होती हैं उन्होंने गामा-रे पृष्ठभूमि के पहले के निष्कर्षों की पुष्टि की गामा-रे तरंग दैर्ध्य पर आकाश का पहला विस्तृत नक्शा तैयार किया और कई बिंदु स्रोतों का पता लगाया तथा विशिष्ट दृश्य सितारों या तारकीय प्रणालियों के साथ इनमें से अधिकतर बिंदु स्रोतों की पहचान करने के लिए उपकरणों का संकल्प अपर्याप्त था।

गामा-रे खगोल विज्ञान में एक खोज 1960 के दशक के अंत और 1970 के दशक की शुरुआत में सैन्य रक्षा उपग्रहों के एक समूह से हुई परमाणु बम विस्फोटों से गामा किरणों की चमक का पता लगाने के लिए बनावट किए गए उपग्रह श्रृंखला पर लगे संसूचक ने पृथ्वी के आसपास के जगह गहरे अंतरिक्ष से गामा किरणों के फटने को रिकॉर्ड करना शुरू किया बाद में संसूचकों ने निर्धारित किया कि ये गामा-किरण फटने को सेकंड से मिनट के अंशों तक देखा जा सकता है यह अप्रत्याशित दिशाओं से अचानक प्रकट होता है और फिर गामा-किरण आकाश पर संक्षिप्त रूप से हावी होने के बाद लुप्त हो जाता है 1980 के दशक के मध्य से सोवियत शुक्र अंतरिक्ष यान और पायनियर वीनस ऑर्बिटर सहित विभिन्न प्रकार के उपग्रहों और अंतरिक्ष जांचों पर लगे उपकरणों के साथ अध्ययन किया गया ये उच्च-ऊर्जा चमक के स्रोत एक रहस्य बने हुए हैं ऐसा प्रतीत होता है कि वे ब्रह्मांड में बहुत दूर से आए हैं और वर्तमान में सबसे अधिक संभावित सिद्धांत से यह प्रतीत होता है कि उनमें से कम से कम कुछ तथाकथित हाइपरनोवा विस्फोटों से आते हैं ।

संसूचक को तसंसूचक में किया गया

अवलोकन पहली बार 1960 के दशक में संभव हुआ उनका अवलोकन एक्स-रे या दृश्यमान प्रकाश की तुलना में बहुत अधिक समस्याग्रस्त है क्योंकि गामा-किरणें तुलनात्मक रूप से दुर्लभ हैं यहां तक ​​कि एक उज्ज्वल स्रोत को भी पता लगाने से पहले कई मिनट के अवलोकन समय की आवश्यकता होती है क्योंकि गामा किरणों पर ध्यान केंद्रित करना मुश्किल होता है जिसके परिणामस्वरूप बहुत कम समाधान होता है गामा-रे टेलीस्कोप 2000 के दशक की सबसे अच्छी पीढ़ी में कम ऊर्जा वाले एक्स-रे में देखे गए ।

30 विभवान्तर से अधिक फोटॉन ऊर्जा वाली अत्यधिक ऊर्जावान गामा किरणों का भी भू-आधारित प्रयोगों द्वारा पता लगाया जा सकता है ऐसी उच्च ऊर्जा पर बेहद कम फोटॉन फ्लक्स के लिए संसूचक प्रभावी क्षेत्रों की आवश्यकता होती है जो वर्तमान अंतरिक्ष-आधारित उपकरणों के लिए अव्यावहारिक रूप से बड़े हैं इस तरह के उच्च-ऊर्जा फोटॉन वातावरण में द्वितीयक कणों की व्यापक वर्षा का उत्पादन करते हैं जो जमीन पर देखे जा सकते हैं दोनों सीधे विकिरण द्वारा और वैकल्पिक रूप से विकिरण के माध्यम से जो अति-सापेक्षतावादी बौछार कण उत्सर्जित करते हैं आईएसीटी तकनीक वर्तमान में उच्चतम संवेदनशीलता प्राप्त करती है।

क्रैब नेबुला से निकलने वाली गामा विकिरण पहली बार 1989 में माउंट हॉपकिंस में फ्रेड लॉरेंस व्हिपल वेधशाला द्वारा खोजा गया था ।

गामा-किरण खगोल विज्ञान अवलोकन अभी भी गैर-गामा-किरण पृष्ठभूमि द्वारा कम ऊर्जा पर और उच्च ऊर्जा पर फोटॉन की संख्या से सीमित हैं जिन्हें आस- पास पता लगाया जा सकता है क्षेत्र में प्रगति के लिए बड़े क्षेत्र संसूचक और बेहतर पृष्ठभूमि दमन आवश्यक हैं [8] 2012 में हुई एक खोज से गामा-रे टेलीस्कोप को फोकस करने की अनुमति मिल सकती है [9]700 विभवान्तर से अधिक फोटॉन ऊर्जा पर अपवर्तन का सूचकांक फिर से बढ़ने लगता है।[9]


1980 से 1990 के दशक

स्पेस शटल, 1991 द्वारा कॉम्पटन को कक्षा में छोड़ा गया

19 जून 1988 को बिरिगुई से 10:15 यूटीसी पर एक गुब्बारा प्रारम्भ हुआ जिसमें दो संसूचक थे 6 घंटे के कुल अवलोकन समय के लिए 5.5 एमबी के वायुदाब की ऊंचाई तक [10] बड़ी मंदाकिनियां बादल में सुपरनोवा की खोज 23 फरवरी 1987 को हुई थी और इसकी चमक के साथ एक नीला ग्रह था

1977 में अपने एचईएओ कार्यक्रम के दौरान नासा ने गामा-किरण खगोल विज्ञान के लिए एक महान वेधशाला बनाने की योजना की घोषणा की 1980 के दशक के दौरान संसूचक तकनीक में प्रमुख प्रगति का लाभ उठाने के लिए बनावट किया गया था और 1991 में प्रारम्भ किया गया था। सीजीआरओ ने बड़ी मात्रा में डेटा प्रदान किया जिसका उपयोग हमारे ब्रह्मांड में उच्च-ऊर्जा प्रक्रियाओं की हमारी समझ को बेहतर बनाने के लिए किया जा रहा है सीजीआरओ को जून 2000 में कक्षा से बाहर कर दिया गया था ।

2000 और 2010

First survey of the sky at energies above 1 GeV, collected by Fermi in three years of observation (2009 to 2011).
Fermi Second Catalog of Gamma-Ray Sources constructed over two years. All-sky image showing energies greater than 1 GeV. Brighter colors indicate gamma-ray sources.[11]

नासा अंतरिक्ष यान नील चार्ल्स स्विफ्ट वेधशाला 2004 में प्रारम्भ किया गया था और गामा-रे अवलोकन के लिए उपकरण रखता है जिससे दूरी निर्धारण और प्रकाश विस्तृत हुआ है इसने स्थापित किया है कि अधिकांश विस्फोट दूर की आकाशगंगाओं में बड़े सितारों के विस्फोटों में उत्पन्न होते हैं इंटीग्रल 17 अक्टूबर 2002 को प्रारम्भ किया गया तथा यह गणराज्य पोलैंड, अमेरिका और रूस के अतिरिक्त योगदान के साथ एक ईएसए मिशन है।

मिल्की वे के केंद्र में दो विशाल गामा-रे बुलबुलों की अवधारणा।

नवंबर 2010 में गामा-रे स्पेस टेलीस्कोप का उपयोग करते हुएआकाशगंगा के केंद्र में लगभग 25,000 प्रकाश-वर्ष फैले दो विशाल गामा-रे बुलबुले पाए गए जो उच्च-ऊर्जा खगोल विज्ञान के इन बुलबुले उच्च-ऊर्जा विकिरण को बड़े पैमाने पर ब्लैक होल या लाखों साल पहले सितारा संरचनाओं के फटने के सबूत के रूप में प्रस्फुटित होने का संदेह है। वैज्ञानिकों द्वारा आकाश में व्याप्त पृष्ठभूमि गामा-किरणों के कोहरे को छानने के बाद उनकी खोज की गई इस खोज ने पिछले सुरागों की पुष्टि की कि मिल्की के केंद्र में एक बड़ी अज्ञात संरचना थी।[12]

हाल के अवलोकन

अप्रैल 2018 में अंतरिक्ष में उच्च-ऊर्जा गामा-किरण स्रोतों का अभी तक का सबसे बड़ा पुस्तकालय प्रकाशित किया गया था [13]2020 में गामा-रे तीव्रता व्यतिकरणमापी का उपयोग करके कुछ तारकीय व्यासों को मापा गया था।[14]


गामा-किरण विस्फोट 2022

चिली में स्थित जेमिनी दक्षिण टेलीस्कोप का उपयोग करने वाले खगोलविदों ने 14 अक्टूबर 2022 को जीआरबी221009ए के रूप में पहचाने जाने वाले गामा-रे को अचानक टूटा देखा गया गामा-रे ब्रह्मांड में होने वाली प्रकाश की सबसे ऊर्जावान चमक हैं नासा के वैज्ञानिकों ने अनुमान लगाया कि विस्फोट पृथ्वी से 2.4 अरब प्रकाश वर्ष की दूरी पर हुआ था गामा-किरण विस्फोट उस समय हुआ जब कुछ विशाल सितारे अपने जीवन के अंत में ब्लैक होल में ढहने से पहले नक्षत्र की दिशा में विस्फोट कर गए इसमें यह अनुमान लगाया गया है कि फटने से 18 वोल्ट ऊर्जा निकली ऐसा लग रहा था कि जीआरबी 221009ए एक लंबा गामा-किरण विस्फोट था जो संभवत: सुपरनोवा विस्फोट से शुरू हुआ था।[15] [16]


यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Astronomical literature generally hyphenates "gamma-ray" when used as an adjective, but uses "gamma ray" without a hyphen for the noun.


उद्धरण

  1. "चंद्रमा से गामा किरणों का EGRET पता लगाना". Goddard Space Flight Center. August 1, 2005.
  2. Grossman, Lisa (August 24, 2018). "सूर्य से निकलने वाली अजीब गामा किरणें इसके चुंबकीय क्षेत्र को समझने में मदद कर सकती हैं". Science News.
  3. Reddy, Francis (January 30, 2017). "नासा के फर्मी ने 'हिडन' सोलर फ्लेयर्स से गामा किरणों को देखा". NASA.
  4. for example, supernova SN 1987A emitted an "afterglow" of gamma-ray photons from the decay of newly made radioactive cobalt-56 ejected into space in a cloud, by the explosion.
    "The Electromagnetic Spectrum - Gamma-rays". NASA. Archived from the original on April 30, 2007. Retrieved November 14, 2010.
  5. Morrison, Philip (March 1958). "गामा-रे खगोल विज्ञान पर". Il Nuovo Cimento. 7 (6): 858–865. Bibcode:1958NCim....7..858M. doi:10.1007/BF02745590. S2CID 121118803.
  6. "गामा-रे खगोल विज्ञान का इतिहास". NASA. Archived from the original on May 20, 1998. Retrieved November 14, 2010.
  7. "गामा किरण". Science Clarified. Retrieved November 14, 2010.
  8. Krieg, Uwe (2008). Siegfried Röser (ed.). Reviews in Modern Astronomy: Cosmic Matter. Vol. 20. Wiley. p. 191. ISBN 978-3-527-40820-7.
  9. 9.0 9.1 Wogan, Tim (May 9, 2012). "सिलिकॉन 'प्रिज्म' गामा किरणों को मोड़ देता है". PhysicsWorld.com.
  10. Figueiredo, N.; et al. (November 1990). "Gamma-ray observations of SN 1987A". Revista Mexicana de Astronomía y Astrofísica. 21: 459–462. Bibcode:1990RMxAA..21..459F.
  11. "Fermi's Latest Gamma-ray Census Highlights Cosmic Mysteries". NASA. September 9, 2011. Retrieved May 31, 2015.
  12. Su, Meng; Slatyer, Tracy R.; Finkbeiner, Douglas P. (December 2010). "Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind?". The Astrophysical Journal. 724 (2): 1044–1082. arXiv:1005.5480v3. Bibcode:2010ApJ...724.1044S. doi:10.1088/0004-637X/724/2/1044. S2CID 59939190.
    Aguilar, David A. & Pulliam, Christine (November 9, 2010). "Astronomers Find Giant, Previously Unseen Structure in our Galaxy". Harvard-Smithsonian Center for Astrophysics. Retrieved November 14, 2010.
    Beatty, Kelly (November 11, 2010). "Why is the Milky Way Blowing Bubbles?". Sky & Telescope. Retrieved November 14, 2010.
  13. "आकाशगंगा में बहुत उच्च-ऊर्जा गामा किरण स्रोतों का अब तक प्रकाशित सबसे बड़ा कैटलॉग" (Press release). CNRS. Phys.org. April 9, 2018.
  14. Gamma-ray Scientists "Dust Off" Intensity Interferometry, Upgrade Technology with Digital Electronics, Larger Telescopes, and Improved Sensitivity
  15. Record-breaking gamma-ray burst
  16. Astronomers spotted the most powerful flash of light


बाहरी संबंध