ट्रान्सएस्टरीफिकेशन

From Vigyanwiki
Revision as of 21:26, 14 February 2023 by alpha>Pallvic

ट्रांसएस्टरीफिकेशन एक एस्टर के कार्बनिक कार्यात्मक समूह R″ को एल्कोहल के कार्बनिक समूह R' के साथ बदलने की प्रक्रिया है। इन प्रतिक्रियाओं को एक अम्ल या क्षार उत्प्रेरक की उपस्थिति में उत्प्रेरित किया जाता है। ये अभिक्रियाएं अम्ल या क्षार उत्प्रेरक [1]विशेष रूप से लाइपेस या अन्य एंजाइमों की मदद से भी पूरी की जा सकती है,(एक उदाहरण लाइपेस E.C.3.1.1.3 है)[2]).

Transesterification: alcohol + ester → different alcohol + different ester

प्रबल अम्ल कार्बोनिल समूह को एक प्रोटॉन देकर अभिक्रिया को उत्प्रेरित करके इसे अधिक शक्तिशाली इलेक्ट्रॉनरागी बनाते हैं, जबकि क्षार एल्कोहल से एक प्रोटॉन को निकालकर अभिक्रिया को उत्प्रेरित करके इसे अधिक नाभिकरागी बनाते हैं। यदि अभिक्रिया द्वारा उत्पादित एल्कोहल को आसवन द्वारा अभिकारकों से अलग किया जा सकता है, तो यह उत्पाद की तरफ साम्य चला जायेगा संतुलन बनाएगा , इसका अर्थ है कि बड़े एल्कोक्सी समूहों वाले एस्टर मिश्रण को गर्म करके उच्च शुद्धता में मिथाइल या एथिल एस्टर से बनाया जा सकता है।

तंत्र-

ट्रांसएस्टरीफिकेशन तंत्र में, शुरुआती एस्टर का कार्बोनिल कार्बन एक चतुष्फलकीय इंटरमीडिएट देने के लिए अभिक्रिया करता है, जो या तो शुरुआती सामग्री में वापस आ जाता है,या ट्रांसएस्टरिफाइड उत्पाद (RCOOR2) के लिए आगे बढ़ता है। विभिन्न प्रजातियां संतुलन में उपस्थित हैं, और उत्पाद वितरण अभिकारक और उत्पाद की सापेक्ष ऊर्जा पर निर्भर करता है। प्रतिक्रिया स्थितियों के आधार पर एस्टर जल अपघटन और एस्टरीकरण भी होगा, जिसके परिणामस्वरूप कुछ मात्रा में मुक्त कार्बोक्जिलिक अम्ल उपस्थित होता है।

General transesterification mechanism.png

अनुप्रयोग-

पॉलिएस्टर उत्पादन-

ट्रांसएस्टरीफिकेशन का सबसे बड़ा अनुप्रयोग पॉलीएस्टर के संश्लेषण में होता है। [3] इस अनुप्रयोग में डाई एस्टर वृहत् अणु बनाने के लिए डाइऑल के साथ ट्रांसएस्टरीफिकेशन से गुजरते हैं। उदाहरण के लिए, डाइमिथाइल टेरेफ्थेलेट और इथाइलीन ग्लाइकॉल पॉलीथीन टैरीपिथालेट और मेथनॉल बनाने के लिए अभिक्रिया करते हैं, जो अभिक्रिया को आगे बढ़ाने के लिए वाष्पित हो जाता है।

मेथेनॉलिसिस और बायोडीजल उत्पादन-

विपरीत अभिक्रिया , मेथनोलिसिस, भी ट्रांसएस्टरीफिकेशन का एक उदाहरण है। इस प्रक्रिया का उपयोग पॉलीस्टरों को अलग-अलग एकलक में पुनर्चक्रण करने के लिए किया गया है। इसका उपयोग वसा (ट्राइग्लिसराइड्स) को बायोडीजल में बदलने के लिए भी किया जाता है। यह रूपांतरण पहले उपयोगों में से एक था। द्वितीय विश्व युद्ध से पहले दक्षिण अफ्रीका में हेवी-ड्यूटी वाहनों को चलाने के लिए ट्रांसएस्टरिफाइड वनस्पति तेल (बायोडीजल) का इस्तेमाल किया गया था।

कोलगेट पामोलिव- द्वारा 1950 के दशक में अमेरिका में इसका पेटेंट कराया गया था, हालांकि बायोलिपिड ट्रांसएस्टरीफिकेशन बहुत पहले खोजा जा सकता था। 1940 के दशक में, शोधकर्ता ग्लिसरॉल का अधिक आसानी से उत्पादन करने के लिए एक विधि की तलाश कर रहे थे, जिसका उपयोग द्वितीय विश्व युद्ध के लिए विस्फोटक बनाने के लिए किया गया था। उत्पादकों द्वारा आज इस्तेमाल की जाने वाली कई विधियों का मूल 1940 के दशक के मूल शोध में है।

बायोलिपिड ट्रांसएस्टरीफिकेशन भी हाल ही में जापानी शोधकर्ताओं द्वारा एक सुपर-क्रिटिकल मेथनॉल पद्धति का उपयोग करके संभव होने के लिए दिखाया गया है, जिससे फैटी-एसिड मिथाइल एस्टर में बायोलिपिड/मेथनॉल प्रतिक्रिया को शारीरिक रूप से उत्प्रेरित करने के लिए उच्च तापमान, उच्च दबाव वाले जहाजों का उपयोग किया जाता है।

वसा प्रसंस्करण

खाद्य उद्योग में खाद्य वसा और वनस्पति तेलों में ट्राइग्लिसराइड्स के वसा अम्ल को पुनर्व्यवस्थित करने के लिए वसा ब्याजकरण का उपयोग किया जाता है। उदाहरण के लिए, ज्यादातर संतृप्त फैटी एसिड के साथ एक ठोस वसा को उच्च असंतृप्त एसिड सामग्री वाले वनस्पति तेल के साथ ट्रांसएस्टरीफाइड किया जा सकता है, जिससे फैलाने योग्य अर्ध-ठोस वसा का उत्पादन होता है जिसके अणुओं में दोनों प्रकार के एसिड होते हैं।

संश्लेषण

ट्रांसएस्टरीफिकेशन का उपयोग enol डेरिवेटिव्स को संश्लेषित करने के लिए किया जाता है, जो अन्य तरीकों से तैयार करना मुश्किल होता है। विनयल असेटेट, जो सस्ते में उपलब्ध है, ट्रांसएस्टरीफिकेशन से गुजरता है, एनोल ईथर तक पहुंच प्रदान करता है:[4][5]

आरओएच + AcOCH=CH
2
ROCH=CH
2
+ एसीओएच

जब लाइपेस के साथ मध्यस्थता की जाती है तो प्रतिक्रिया को उच्च ऊर्जावान चयनात्मकता के साथ प्रभावित किया जा सकता है।[6]


यह भी देखें

संदर्भ

  1. Otera, Junzo. (June 1993). "ट्रान्सएस्टरीफिकेशन". Chemical Reviews. 93 (4): 1449–1470. doi:10.1021/cr00020a004.
  2. "ENZYME – 3.1.1.3 Triacylglycerol lipase". enzyme.expasy.org. SIB Swiss Institute of Bioinformatics. Retrieved 2021-02-17.{{cite web}}: CS1 maint: url-status (link)
  3. Wilhelm Riemenschneider1 and Hermann M. Bolt "Esters, Organic" Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a09_565.pub2
  4. Tomotaka Hirabayashi, Satoshi Sakaguchi, Yasutaka Ishii (2005). "Iridium-catalyzed Synthesis of Vinyl Ethers from Alcohols and Vinyl Acetate". Org. Synth. 82: 55. doi:10.15227/orgsyn.082.0055.{{cite journal}}: CS1 maint: uses authors parameter (link)
  5. Yasushi Obora, Yasutaka Ishii (2012). "Discussion Addendum: Iridium-catalyzed Synthesis of Vinyl Ethers from Alcohols and Vinyl Acetate". Org. Synth. 89: 307. doi:10.15227/orgsyn.089.0307.{{cite journal}}: CS1 maint: uses authors parameter (link)
  6. Manchand, Percy S. (2001). "Vinyl Acetate". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rv008. ISBN 0471936235.