फॉस्फोर थर्मोमेट्री

From Vigyanwiki
Revision as of 12:40, 3 April 2023 by alpha>Indicwiki (Created page with "फॉस्फोर थर्मोमेट्री सतह के तापमान माप के लिए एक प्रकाशिकी विधि ह...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

फॉस्फोर थर्मोमेट्री सतह के तापमान माप के लिए एक प्रकाशिकी विधि है। विधि भास्वर सामग्री द्वारा उत्सर्जित ल्यूमिनेसेंस का शोषण करती है। फॉस्फोरस महीन सफेद या पेस्टल रंग के अकार्बनिक चूर्ण होते हैं, जो किसी भी तरह के माध्यम से ल्यूमिनेस, यानी प्रकाश का उत्सर्जन करने के लिए उत्तेजित हो सकते हैं। उत्सर्जित प्रकाश की कुछ विशेषताएं तापमान के साथ बदलती हैं, जिसमें चमक, रंग और चमक के बाद की अवधि शामिल है। उत्तरार्द्ध का उपयोग आमतौर पर तापमान माप के लिए किया जाता है।

इतिहास

फॉस्फोर का उपयोग करने वाले तापमान माप का पहला उल्लेख मूल रूप से 1932 में पॉल न्यूबर्ट द्वारा दायर दो पेटेंट में है।[1]


ल्यूमिनेसेंस की समय निर्भरता

एलईडी आउटपुट और ल्यूमिनेसेंस के बीच चरण अंतर।

आम तौर पर एक छोटी अवधि के पराबैंगनी लैंप या लेज़र स्रोत फॉस्फर कोटिंग को प्रकाशित करते हैं जो बदले में स्पष्ट रूप से चमकते हैं। जब रोशनी का स्रोत बंद हो जाता है, तो ल्यूमिनेसेंस एक विशिष्ट समय के लिए लगातार घटता रहेगा। चमक को ई (गणितीय स्थिरांक) तक कम करने के लिए आवश्यक समय | इसके मूल मान का 1/e क्षय समय या जीवनकाल के रूप में जाना जाता है और इसे किस रूप में दर्शाया जाता है . यह तापमान का एक कार्य है, टी।

ल्यूमिनेसेंस की तीव्रता (भौतिकी), I आमतौर पर घातांक प्रकार्य का क्षय करता है:

जहां मैं0प्रारंभिक तीव्रता (या आयाम) है। 'टी' समय है और पैरामीटर है जो तापमान पर निर्भर हो सकता है।

प्रत्यक्ष क्षय समय माप पर आधारित एक तापमान संवेदक को 1000 से 1,600 डिग्री सेल्सियस तक के तापमान तक पहुंचने के लिए दिखाया गया है।[2] उस काम में, जांच के लिए एक मोनोलिथिक संरचना बनाने के लिए एक डॉप्ड YAG फॉस्फर को एक अनोपेड YAG फाइबर पर उगाया गया था, और उत्तेजना स्रोत के रूप में एक लेजर का उपयोग किया गया था। इसके बाद, उत्तेजना स्रोत के रूप में एल ई डी का उपयोग करने वाले अन्य संस्करणों को महसूस किया गया। ये डिवाइस 1,000 °C तक तापमान माप सकते हैं, और माइक्रोवेव और प्लाज्मा प्रसंस्करण अनुप्रयोगों में उपयोग किए जाते हैं।[3] यदि उत्तेजना स्रोत स्पंदित होने के बजाय आवधिक है, तो ल्यूमिनेसेंस की समय प्रतिक्रिया तदनुसार भिन्न होती है। उदाहरण के लिए, साइनसॉइडली चेंजिंग प्रकाश उत्सर्जक डायोड (एलईडी) फ्रीक्वेंसी f के सिग्नल और परिणामी प्रतिदीप्ति के बीच एक चरण अंतर होता है (चित्र देखें)। चरण अंतर क्षय समय और इसलिए तापमान के साथ भिन्न होता है:


उत्सर्जन लाइनों की तापमान निर्भरता: तीव्रता अनुपात

तापमान का पता लगाने की दूसरी विधि दो अलग-अलग उत्सर्जन लाइनों के तीव्रता अनुपात पर आधारित है; कोटिंग तापमान में परिवर्तन स्फुरदीप्ति स्पेक्ट्रम के परिवर्तन से परिलक्षित होता है।[4][5] यह विधि सतह के तापमान वितरण को मापने में सक्षम बनाती है।[6] तीव्रता अनुपात पद्धति का लाभ यह है कि प्रदूषित प्रकाशिकी का मापन पर बहुत कम प्रभाव पड़ता है क्योंकि यह उत्सर्जन रेखाओं के बीच अनुपातों की तुलना करता है। उत्सर्जन रेखाएं 'गंदी' सतहों या प्रकाशिकी से समान रूप से प्रभावित होती हैं।

तापमान निर्भरता

दाईं ओर की आकृति के लिए कई अवलोकन प्रासंगिक हैं:

  • ऑक्सीसल्फ़ाइड सामग्री कई अलग-अलग उत्सर्जन रेखाएँ प्रदर्शित करती हैं, जिनमें से प्रत्येक में एक अलग तापमान निर्भरता होती है। एक दुर्लभ-पृथ्वी को दूसरे के लिए प्रतिस्थापित करना, इस उदाहरण में ला को जीडी में बदलना, तापमान निर्भरता को स्थानांतरित करता है।
  • YAG:Cr सामग्री (Y3अल5O12:करोड़3+) कम संवेदनशीलता दिखाता है लेकिन अधिक संवेदनशील सामग्री की तुलना में व्यापक तापमान सीमा को कवर करता है।
  • कुछ दहलीज मूल्य पर तापमान निर्भर होने से पहले कभी-कभी क्षय समय एक विस्तृत श्रृंखला में स्थिर होता है। यह YVO के लिए सचित्र है4: उप वक्र; यह कई अन्य सामग्रियों के लिए भी है (चित्र में नहीं दिखाया गया है)। निर्माता कभी-कभी संवेदीकरण के रूप में दूसरी दुर्लभ पृथ्वी जोड़ते हैं। यह उत्सर्जन को बढ़ा सकता है और तापमान पर निर्भरता की प्रकृति को बदल सकता है। इसके अलावा, कभी-कभी [[येट्रियम अल्युमीनियम गार्नेट]] में कुछ एल्यूमीनियम के लिए गैलियम को प्रतिस्थापित किया जाता है, जिससे तापमान निर्भरता भी बदल जाती है।
  • डिस्प्रोसियम (Dy) फॉस्फोर का उत्सर्जन क्षय कभी-कभी समय के साथ गैर-घातीय होता है। नतीजतन, क्षय समय को सौंपा गया मान चुने गए विश्लेषण पद्धति पर निर्भर करेगा। यह गैर-घातीय चरित्र अक्सर अधिक स्पष्ट हो जाता है क्योंकि डोपेंट एकाग्रता बढ़ जाती है।
  • उच्च तापमान वाले हिस्से में, दो ल्यूटेशियम फॉस्फेट के नमूने पाउडर के बजाय सिंगल क्रिस्टल होते हैं। हालांकि इसका क्षय समय और इसकी तापमान निर्भरता पर मामूली प्रभाव पड़ता है। हालांकि, किसी दिए गए फॉस्फोर का क्षय समय कण आकार पर निर्भर करता है, खासकर एक माइक्रोमीटर से नीचे।

थर्मोग्राफिक फॉस्फोर के ल्यूमिनेसेंस को प्रभावित करने वाले और भी पैरामीटर हैं, उदा। उत्तेजना ऊर्जा, डोपेंट एकाग्रता या संरचना या आसपास के गैस चरण का पूर्ण दबाव। इसलिए, सभी मापों के लिए इन मापदंडों को स्थिर रखने के लिए सावधानी बरतनी होगी।

थर्मल बाधा कोटिंग में थर्मोग्राफिक फॉस्फर का अनुप्रयोग

एक थर्मल बैरियर कोटिंग (TBC) गैस टर्बाइन घटकों को स्वीकार्य जीवन काल के दौरान इंजन के गर्म खंड में उच्च तापमान पर जीवित रहने की अनुमति देता है। ये कोटिंग्स पतली सिरेमिक कोटिंग्स (कई सौ माइक्रोमीटर) हैं जो आमतौर पर ऑक्साइड सामग्री पर आधारित होती हैं।

शुरुआती कार्यों में ल्यूमिनेसेंट सामग्रियों के एकीकरण को टीबीसी में कटाव सेंसर के रूप में माना जाता है।[7] तापमान का पता लगाने के लिए एक थर्मल बैरियर सेंसर कोटिंग (सेंसर टीबीसी) की धारणा 1998 में पेश की गई थी। सतह पर एक फॉस्फर परत लगाने के बजाय जहां तापमान को मापने की जरूरत है, टीबीसी की संरचना को स्थानीय रूप से संशोधित करने का प्रस्ताव दिया गया था ताकि यह थर्मोग्राफिक फॉस्फर के साथ-साथ एक सुरक्षात्मक थर्मल बैरियर के रूप में कार्य करता है। यह दोहरी कार्यात्मक सामग्री सतह के तापमान माप को सक्षम करती है लेकिन टीबीसी के भीतर और धातु / टॉपकोट इंटरफ़ेस पर तापमान को मापने का साधन भी प्रदान कर सकती है, जिससे एक एकीकृत ताप प्रवाह गेज के निर्माण को सक्षम किया जा सकता है।[8] यूरोपिया (YSZ:Eu) पाउडर के साथ येट्रिया-स्थिर जिरकोनिया को-डोप्ड पर पहला परिणाम 2000 में प्रकाशित किया गया था।[9] उन्होंने कोटिंग बनाने के लिए ईएसएवीडी तकनीक का इस्तेमाल करते हुए 50 माइक्रोन की अनडोप्ड वाईएसजेड परत के माध्यम से देखने और एक पतली (10 माइक्रोन) वाईएसजेड: ईयू परत (द्वि-परत प्रणाली) के फॉस्फोरेसेंस का पता लगाने के लिए उप-सतह माप का भी प्रदर्शन किया।[10] टीबीसी के इलेक्ट्रॉन बीम भौतिक वाष्प जमाव पर पहला परिणाम 2001 में प्रकाशित हुआ था।[11] परीक्षण की गई कोटिंग डिस्प्रोसिया (YSZ:Dy) के साथ मानक YSZ सह-डोप की एक मोनोलेयर कोटिंग थी। औद्योगिक वायुमंडलीय प्लाज्मा छिड़काव (एपीएस) सेंसर कोटिंग सिस्टम पर पहला काम 2002 के आसपास शुरू हुआ और 2005 में प्रकाशित हुआ।[12] उन्होंने उच्च गति कैमरा सिस्टम का उपयोग करके बर्नर रिग्स में इन-सीटू द्वि-आयामी तापमान माप के लिए एपीएस सेंसर कोटिंग्स की क्षमताओं का प्रदर्शन किया।[13] इसके अलावा, एपीएस सेंसर कोटिंग्स की तापमान माप क्षमताओं को 1400 डिग्री सेल्सियस से अधिक प्रदर्शित किया गया था।[14] मल्टीलेयर सेंसिंग टीबीसी पर परिणाम, नीचे और कोटिंग की सतह पर एक साथ तापमान माप को सक्षम करने के बारे में बताया गया। थर्मल ढाल की निगरानी के लिए और वास्तविक सेवा स्थितियों के तहत टीबीसी की मोटाई के माध्यम से गर्मी प्रवाह को निर्धारित करने के लिए ऐसी बहुपरत कोटिंग को गर्मी प्रवाह गेज के रूप में भी इस्तेमाल किया जा सकता है।[15]


== टीबीसी == में थर्मोग्राफिक फॉस्फोर के लिए आवेदन जबकि पहले बताए गए तरीके तापमान का पता लगाने पर ध्यान केंद्रित कर रहे हैं, थर्मल बैरियर कोटिंग में फॉस्फोरसेंट सामग्री को शामिल करना भी उम्र बढ़ने के तंत्र या अन्य भौतिक मापदंडों में परिवर्तन का पता लगाने के लिए एक सूक्ष्म जांच के रूप में काम कर सकता है जो ऑप्टिकल सक्रिय के स्थानीय परमाणु परिवेश को प्रभावित करता है। आयन।[8][16] वैनेडियम हमले के कारण YSZ में गर्म संक्षारण प्रक्रियाओं का पता लगाने का प्रदर्शन किया गया।[17]


यह भी देखें

संदर्भ

  1. Allison, S. W. (2019). A brief history of phosphor thermometry. Measurement Science and Technology, 30(7), 072001.
  2. J.L. Kennedy and N. Djeu (2002), "Operation of Yb:YAG fiber optic temperature sensor up to 1,600°C", Sensors and Actuators A 100, 187-191.
  3. Commercialized by MicroMaterials, Inc. under US Patents 6,045,259 and 9,599,518 B2.
  4. J. P. Feist & A. L. Heyes (2000). "The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications". Measurement Science and Technology. 11 (7): 942–947. Bibcode:2000MeScT..11..942F. doi:10.1088/0957-0233/11/7/310.
  5. L. P. Goss, A. A. Smith and M. E. Post (1989). "लेजर-प्रेरित प्रतिदीप्ति द्वारा सतह थर्मोमेट्री". Review of Scientific Instruments. 60 (12): 3702–3706. Bibcode:1989RScI...60.3702G. doi:10.1063/1.1140478.
  6. J. P. Feist, A. L. Heyes and S. Seefeldt (2003). "गैस टर्बाइन कॉम्बस्टर्स में फिल्म कूलिंग अध्ययन के लिए थर्मोग्राफिक फॉस्फर थर्मोमेट्री". Journal of Power and Energy. 217 (2): 193–200. doi:10.1243/09576500360611227. S2CID 95454730.
  7. K. Amano, H. Takeda, T. Suzuki, M. Tamatani, M. Itoh and Y. Takahashi (1987), "Thermal barrier coating" U.S. Patent 4,774,150
  8. 8.0 8.1 K-L. Choy, A. L. Heyes and J. Feist (1998), "Thermal barrier coating with thermoluminescent indicator material embedded therein" U.S. Patent 6,974,641
  9. J. P. Feist & A. L. Heyes (2000). "उच्च तापमान फॉस्फोर थर्मोमेट्री के लिए यूरोपियम-डोप्ड येट्रिया-स्थिर ज़िकोनिया". Proceedings of the Institution of Mechanical Engineers. 214, Part L: 7–11.
  10. K-L. Choy; J. P. Feist; A. L. Heyes; B. Su (1999). "Eu-doped Y2O3 phosphor films produced by electrostatic-assisted chemical vapor deposition". Journal of Materials Research. 14 (7): 3111–3114. Bibcode:1999JMatR..14.3111C. doi:10.1557/JMR.1999.0417.
  11. J. P. Feist, A. L. Heyes and J. R. Nicholls (2001). "एक इलेक्ट्रॉन बीम भौतिक वाष्प जमाव में फॉस्फोर थर्मोमेट्री ने डिस्प्रोसियम के साथ डोप किए गए थर्मल बैरियर कोटिंग का उत्पादन किया". Proceedings of the Institution of Mechanical Engineers. 215 Part G (6): 333–340. doi:10.1243/0954410011533338. S2CID 137294920.
  12. X. Chen; Z. Mutasim; J. Price; J. P. Feist; A. L. Heyes; S. Seefeldt (2005). "Industrial sensor TBCs: Studies on temperature detection and durability". International Journal of Applied Ceramic Technology. 2 (5): 414–421. doi:10.1111/j.1744-7402.2005.02042.x.
  13. A. L. Heyes; S. Seefeldt; J. P Feist (2005). "सतह के तापमान माप के लिए दो-रंग थर्मोमेट्री". Optics and Laser Technology. 38 (4–6): 257–265. Bibcode:2006OptLT..38..257H. doi:10.1016/j.optlastec.2005.06.012.
  14. J. P. Feist, J. R. Nicholls, M. J. Fraser, A. L. Heyes (2006) "Luminescent material compositions and structures incorporating the same" Patent PCT/GB2006/003177
  15. R.J.L. Steenbakker; J.P. Feist; R.G. Wellmann; J.R. Nicholls (2008). Sensro TBCs: remote in-situ condition monitoring of EB-PVD coatings at elevated temperatures, GT2008-51192. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, June 9–13, Berlin, Germany. doi:10.1115/GT2008-51192.
  16. A. M. Srivastava, A. A. Setlur, H. A. Comanzo, J. W. Devitt, J. A. Ruud and L. N. Brewer (2001)"Apparatus for determining past-service conditions and remaining life of thermal barrier coatings and components having such coatings" U.S. Patent 6730918B2
  17. J. P. Feist and A. L. Heyes (2003) "Coatings and an optical method for detecting corrosion process in coatings" GB. Patent 0318929.7


अग्रिम पठन