कासिमिर तत्व

From Vigyanwiki
Revision as of 11:49, 29 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Distinguished element of a Lie algebra's center}} गणित में, एक कासिमिर तत्व (कैसिमिर इनवेर...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक कासिमिर तत्व (कैसिमिर इनवेरिएंट या कासिमिर ऑपरेटर के रूप में भी जाना जाता है) एक लाई बीजगणित के सार्वभौमिक लिफाफा बीजगणित के केंद्र (रिंग थ्योरी) का एक विशिष्ट तत्व है। एक प्रोटोटाइपिकल उदाहरण स्क्वायर कोणीय गति ऑपरेटर है, जो त्रि-आयामी रोटेशन समूह SO(3) का कासिमिर तत्व है।

अधिक आम तौर पर, कासिमिर तत्वों का उपयोग सार्वभौमिक लिफाफा बीजगणित के केंद्र के किसी भी तत्व को संदर्भित करने के लिए किया जा सकता है। इन तत्वों के एक क्षेत्र पर बीजगणित को हरीश-चंद्र समरूपता के माध्यम से एक बहुपद बीजगणित के लिए समरूपता के रूप में जाना जाता है।

कासिमिर तत्व का नाम हेंड्रिक कासिमिर के नाम पर रखा गया है, जिन्होंने 1931 में कठोर शरीर की गतिशीलता के अपने विवरण में उनकी पहचान की थी।[1]


परिभाषा

सबसे अधिक इस्तेमाल किया जाने वाला कासिमिर इनवेरिएंट द्विघात इनवेरिएंट है। यह परिभाषित करने के लिए सबसे आसान है, और इसलिए पहले दिया गया है। हालांकि, किसी के पास उच्च क्रम के कासिमिर इनवेरिएंट भी हो सकते हैं, जो उच्च क्रम के सजातीय सममित बहुपदों के अनुरूप होते हैं।

द्विघात कासिमिर तत्व

लगता है कि एक -आयामी झूठ बीजगणित। बता दें कि B एक नॉनडिजेनरेट द्विरेखीय रूप है जो कि Adjoint_representation_of_a_Lie_algebra के अंतर्गत अपरिवर्तनीय है अपने आप पर, जिसका अर्थ है सभी एक्स, वाई, जेड इन के लिए . (बी की सबसे आम पसंद मारक रूप है सेमीसिंपल झूठ बीजगणित है।) होने देना

का कोई भी आधार (रैखिक बीजगणित) हो , और

का दोहरा आधार हो बी के संबंध में 'कासिमिर तत्व' बी के लिए सार्वभौमिक लिफाफा बीजगणित का तत्व है सूत्र द्वारा दिया गया

हालांकि परिभाषा झूठ बीजगणित के आधार के विकल्प पर निर्भर करती है, यह दिखाना आसान है कि Ω इस पसंद से स्वतंत्र है। दूसरी ओर, Ω द्विरेखीय रूप B पर निर्भर करता है। B के व्युत्क्रम का अर्थ है कि कासिमिर तत्व लाई बीजगणित के सभी तत्वों के साथ संचार करता है। , और इसलिए सार्वभौमिक आवरण बीजगणित के एक वलय के केंद्र में स्थित है .[2]


=== एक रेखीय प्रतिनिधित्व और एक चिकनी कार्रवाई === के द्विघात Casimir अपरिवर्तनीय

लाई बीजगणित निरूपण ρ दिया गया है सदिश स्थान V पर, संभवतः अनंत-आयामी, ρ का 'कैसिमिर इनवेरिएंट' ρ(Ω) के रूप में परिभाषित किया गया है, सूत्र द्वारा दिए गए V पर रैखिक संचालिका

इस निर्माण का एक विशिष्ट रूप अंतर ज्यामिति और वैश्विक विश्लेषण में महत्वपूर्ण भूमिका निभाता है। मान लीजिए कि लाई बीजगणित के साथ एक जुड़ा लाई समूह जी अलग-अलग कई गुना एम पर समूह कार्रवाई करें। एम पर चिकनी कार्यों के स्थान पर जी के संबंधित प्रतिनिधित्व ρ पर विचार करें। फिर के तत्व एम पर पहले क्रम के डिफरेंशियल ऑपरेटर्स द्वारा प्रतिनिधित्व किया जाता है। इस स्थिति में, ρ का कासिमिर इनवेरिएंट उपरोक्त सूत्र द्वारा परिभाषित एम पर जी-इनवेरिएंट सेकेंड ऑर्डर डिफरेंशियल ऑपरेटर है।

आगे विशेषज्ञता, अगर ऐसा होता है कि एम में एक रिमेंनियन मीट्रिक है जिस पर जी आइसोमेट्रीज़ और स्टेबलाइज़र उपसमूह जी द्वारा सकर्मक रूप से कार्य करता हैx एक बिंदु एक्स पर एम के स्पर्शरेखा स्थान पर अनियमित रूप से कार्य करता है, फिर ρ का कासिमिर इनवेरिएंट मीट्रिक से आने वाले लाप्लासियन ऑपरेटर का एक अदिश गुणक है।

अधिक सामान्य कासिमिर आक्रमणकारियों को भी परिभाषित किया जा सकता है, जो आमतौर पर फ्रेडहोम सिद्धांत में छद्म-विभेदक संचालकों के अध्ययन में होता है।

उच्च क्रम के कासिमिर तत्व

यूनिवर्सल लिफाफा बीजगणित पर लेख कासिमिर ऑपरेटरों की एक विस्तृत, सटीक परिभाषा और उनके कुछ गुणों का एक विवरण देता है। सभी कासिमिर ऑपरेटर एक लाई बीजगणित के आसन्न प्रतिनिधित्व के सममित बीजगणित में सममित सजातीय बहुपदों के अनुरूप हैं :

कहाँ m सममित टेंसर का क्रम है और यह का एक सदिश स्थान आधार बनाते हैं यह एक सममित सजातीय बहुपद के अनुरूप है

में m अनिश्चित चर बहुपद बीजगणित में एक मैदान के ऊपर {{math|K.}समरूपता का कारण पीबीडब्ल्यू प्रमेय से आता है और सार्वभौमिक लिफाफा बीजगणित पर आलेख में अधिक विस्तार से चर्चा की गई है।

इसके अलावा, एक कासिमिर तत्व को सार्वभौमिक आवरण वाले बीजगणित के केंद्र से संबंधित होना चाहिए, अर्थात इसका पालन करना चाहिए

सभी आधार तत्वों के लिए इसी सममित टेंसर के संदर्भ में , यह स्थिति टेंसर के अपरिवर्तनीय होने के बराबर है:

कहाँ झूठ बीजगणित यानी की संरचना स्थिरांक है .

गुण

द्विघात कासिमिर तत्व की विशिष्टता

चूंकि एक साधारण लाई बीजगणित के लिए प्रत्येक अपरिवर्तनीय बिलिनियर फॉर्म किलिंग फॉर्म का एक बहु है, संबंधित कासिमिर तत्व विशिष्ट रूप से एक स्थिरांक तक परिभाषित होता है। एक सामान्य अर्धसरल लाई बीजगणित के लिए, अपरिवर्तनीय द्विरेखीय रूपों के स्थान में प्रत्येक सरल घटक के लिए एक आधार वेक्टर होता है, और इसलिए यह संबंधित कासिमिर ऑपरेटरों के स्थान के लिए भी सही है।

=== जी === पर लाप्लासियन से संबंध

अगर झूठ बीजगणित वाला एक झूठ समूह है , पर एक अपरिवर्तनीय बिलिनियर फॉर्म का विकल्प द्वि-अपरिवर्तनीय रीमैनियन कई गुना ऑन के विकल्प से मेल खाता है . फिर की सार्वभौमिक आवरण बीजगणित की पहचान के तहत बाएं अपरिवर्तनीय अंतर ऑपरेटरों के साथ , बिलिनियर रूप का कासिमिर तत्व के लाप्लास-बेल्ट्रामी ऑपरेटर के नक्शे (इसी द्वि-अपरिवर्तनीय मीट्रिक के संबंध में)।

कासिमिर तत्व और प्रतिनिधित्व सिद्धांत

Giulio Racah के प्रमेय द्वारा,[3] एक अर्धसरल झूठ बीजगणित के लिए सार्वभौमिक आवरण बीजगणित के केंद्र का आयाम इसके अर्धसरल झूठ बीजगणित#रैंक के बराबर है। कासिमिर संचालिका लाप्लासियन की अवधारणा को एक सामान्य अर्ध-सरल झूठ समूह पर देती है; लेकिन रैंक> 1 के लिए लाप्लासियन का कोई अनूठा एनालॉग नहीं है।

परिभाषा के अनुसार सार्वभौमिक आवरण वाले बीजगणित के केंद्र का कोई भी सदस्य बीजगणित के अन्य सभी तत्वों के साथ आवागमन करता है। शूर के लेम्मा के अनुसार, लाइ बीजगणित के किसी भी अप्रासंगिक प्रतिनिधित्व में, कोई भी कासिमिर तत्व इस प्रकार पहचान के समानुपाती होता है। सभी कासिमिर तत्वों के eigenvalues ​​​​का उपयोग लाई बीजगणित (और इसलिए, इसके लाई समूह के भी) के प्रतिनिधित्व को वर्गीकृत करने के लिए किया जा सकता है।[4][clarification needed]

भौतिक द्रव्यमान और स्पिन इन ईजेनवैल्यू के उदाहरण हैं, जैसा कि क्वांटम यांत्रिकी में पाए जाने वाले कई अन्य सांख्यिक अंक हैं। सतही तौर पर, टोपोलॉजिकल क्वांटम संख्याएं इस पैटर्न के लिए एक अपवाद हैं; हालांकि गहरे सिद्धांत संकेत देते हैं कि ये एक ही घटना के दो पहलू हैं।[according to whom?].

होने देना वजन का परिमित आयामी उच्चतम वजन मॉड्यूल हो . फिर द्विघात कासिमिर तत्व पर कार्य करता है निरंतर द्वारा

कहाँ वजन सकारात्मक जड़ों के आधे योग द्वारा परिभाषित किया गया है।[5] अगर गैर तुच्छ है (यानी अगर ), तो यह स्थिरांक अशून्य है। आखिर, जब से प्रमुख है, अगर , तब और , दिखा रहा है . पूर्ण न्यूनीकरण पर वेइल के प्रमेय के प्रमाण में यह अवलोकन एक महत्वपूर्ण भूमिका निभाता है। ईगेनवैल्यू के गैर-लुप्त होने को अधिक अमूर्त तरीके से साबित करना भी संभव है - ईजेनवेल्यू के लिए एक स्पष्ट सूत्र का उपयोग किए बिना - कार्टन की कसौटी का उपयोग करना; हम्फ्रीज़ की पुस्तक में खंड 4.3 और 6.2 देखें।

== सरल झूठ बीजगणित == के सममित अपरिवर्तनीय टेंसर

आदेश का एक कासिमिर तत्व के माध्यम से एक ही क्रम के एक सममित अपरिवर्तनीय टेंसर से मेल खाती है . कासिमिर तत्वों का निर्माण और संबंध सममित अपरिवर्तनीय टेंसरों के लिए समान करने के बराबर है।

सममित अपरिवर्तनीय टेन्सर का निर्माण

सममित अपरिवर्तनीय टेंसरों को परिभाषित प्रतिनिधित्व में सममित निशान के रूप में बनाया जा सकता है[6]

जहां सूचकांकों को किलिंग फॉर्म द्वारा ऊपर और नीचे किया जाता है, और सभी क्रमपरिवर्तनों के तहत सममित किया जाता है।

प्रकार के एंटीसिमेट्रिक इनवेरिएंट टेंसर से सममित अपरिवर्तनीय टेंसरों का निर्माण करना भी संभव है

सममित अपरिवर्तनीय टेंसर[7]

के लिए अनुपयोगी है . ऐसे अपरिवर्तनीय टेन्सर एक दूसरे के लिए इस अर्थ में ओर्थोगोनल हैं कि अगर .

साधारण झूठ बीजगणित के मामले में , आइए हम क्रम तीन के पूर्ण सममित टेंसर का परिचय दें ऐसा है कि, परिभाषित प्रतिनिधित्व में,

फिर सडबेरी सममित अपरिवर्तनीय टेंसर हैं[6]  :


=== सममित अपरिवर्तनीय टेंसर === के बीच संबंध

रैंक के एक साधारण झूठ बीजगणित के लिए , वहाँ हैं बीजीय रूप से स्वतंत्र सममित अपरिवर्तनीय टेंसर। इसलिए, ऐसे किसी टेंसर को के संदर्भ में व्यक्त किया जा सकता है दिए गए टेंसर। सममित अपरिवर्तनीय टेंसरों के बीच पहचान के पूर्ण सेट प्राप्त करने के लिए एक व्यवस्थित विधि है।[6]

झूठ बीजगणित के मामले में , सममित अपरिवर्तनीय टेंसर आज्ञा का पालन करना .[7] अन्य परिवारों के संदर्भ में इन टेंसरों को पुनः व्यक्त करना जैसे या इन अन्य परिवारों के भीतर गैर-तुच्छ संबंधों को जन्म देता है। उदाहरण के लिए, सडबेरी टेंसर के रूप में व्यक्त किया जा सकता है , प्रकार के संबंधों के साथ[7]

संरचना स्थिरांक भी उन पहचानों का पालन करते हैं जो सीधे सममित अपरिवर्तनीय टेंसर से संबंधित नहीं हैं, उदाहरण के लिए[8]:


उदाहरण

का मामला sl(2)

झूठ बीजगणित शून्य ट्रेस के साथ दो-दो-दो जटिल मैट्रिसेस होते हैं। तीन मानक आधार तत्व हैं, ,, और , साथ

कम्यूटेटर हैं

कोई दिखा सकता है कि कासिमिर तत्व है


का मामला so(3)

झूठ बीजगणित SO(3) का झूठा बीजगणित है, त्रि-आयामी यूक्लिडियन अंतरिक्ष के लिए घूर्णन समूह। यह रैंक 1 का सरल है, और इसलिए इसमें एक स्वतंत्र कासिमिर है। रोटेशन समूह के लिए किलिंग फॉर्म सिर्फ क्रोनकर डेल्टा है, और इसलिए कासिमिर इनवेरिएंट केवल जनरेटर के वर्गों का योग है बीजगणित का। यही है, कासिमिर इनवेरिएंट द्वारा दिया गया है

के अलघुकरणीय प्रतिनिधित्व पर विचार करें जिसमें का सबसे बड़ा eigenvalue है है , जहां के संभावित मान हैं . Casimir संकारक के व्युत्क्रमण का तात्पर्य है कि यह पहचान संकारक का गुणक है . निम्नलिखित परिणाम देते हुए, इस स्थिरांक की स्पष्ट रूप से गणना की जा सकती है[9]

क्वांटम यांत्रिकी में, स्केलर मान कुल कोणीय गति के रूप में जाना जाता है। रोटेशन समूह के परिमित-आयामी मैट्रिक्स-मूल्यवान समूह प्रतिनिधित्व के लिए, हमेशा पूर्णांक मान (बोसॉन के लिए) या आधा-पूर्णांक मान (फर्मियन के लिए) लेता है।

दिए गए मूल्य के लिए , मैट्रिक्स प्रतिनिधित्व है -आयामी। इस प्रकार, उदाहरण के लिए, त्रि-आयामी प्रतिनिधित्व के लिए से मेल खाती है , और जनरेटर द्वारा दिया जाता है

जहां के कारक भौतिकी सम्मेलन (यहाँ प्रयुक्त) के साथ समझौते के लिए आवश्यक हैं कि जनरेटर को तिरछा-स्व-आसन्न ऑपरेटर होना चाहिए।[10] द्विघात Casimir अपरिवर्तनीय परिणाम के साथ हाथ से आसानी से गणना की जा सकती है

जैसा कब . इसी तरह, दो आयामी प्रतिनिधित्व का आधार पॉल मैट्रिसेस द्वारा दिया गया है, जो स्पिन (भौतिकी) के अनुरूप है। 12, और एक बार फिर प्रत्यक्ष संगणना द्वारा कासिमिर के सूत्र की जाँच कर सकते हैं।

यह भी देखें

  • हरीश-चंद्र समरूपता
  • पाउली-लुबांस्की स्यूडोवेक्टर
  • क्लेबश-गॉर्डन गुणांक

संदर्भ

  1. Oliver, David (2004). The shaggy steed of physics: mathematical beauty in the physical world. Springer. p. 81. ISBN 978-0-387-40307-6.
  2. Hall 2015 Proposition 10.5
  3. Racah, Giulio (1965). समूह सिद्धांत और स्पेक्ट्रोस्कोपी. Springer Berlin Heidelberg.
  4. Xavier Bekaert, "Universal enveloping algebras and some applications in physics" (2005) Lecture, Modave Summer School in Mathematical Physics.
  5. Hall 2015 Proposition 10.6
  6. 6.0 6.1 6.2 Mountain, Arthur J. (1998). "Invariant tensors and Casimir operators for simple compact Lie groups". Journal of Mathematical Physics. 39 (10): 5601–5607. arXiv:physics/9802012. Bibcode:1998JMP....39.5601M. doi:10.1063/1.532552. ISSN 0022-2488. S2CID 16436468.
  7. 7.0 7.1 7.2 Azcarraga, de; Macfarlane, A. J.; Mountain, A. J.; Bueno, J. C. Perez (1997-06-03). "Invariant tensors for simple groups". Nuclear Physics B. 510 (3): 657–687. arXiv:physics/9706006. doi:10.1016/S0550-3213(97)00609-3. S2CID 14665950.
  8. Haber, Howard E. (2019-12-31). "Useful relations among the generators in the defining and adjoint representations of SU(N)". SciPost Physics Lecture Notes. arXiv:1912.13302v2. doi:10.21468/SciPostPhysLectNotes.21. S2CID 42081451.
  9. Hall 2013 Proposition 17.8
  10. Hall 2013 Proposition 17.3


अग्रिम पठन