पहला मौलिक रूप

From Vigyanwiki
Revision as of 10:48, 24 April 2023 by alpha>Artiverma

विभेदक ज्यामिति में, प्रथम मूलभूत रूप त्रि-आयामी यूक्लिडियन अंतरिक्ष में [[सतह (अंतर ज्यामिति)]] के स्पर्शरेखा स्थान पर आंतरिक उत्पाद है, जो R3 डॉट उत्पाद से विहित रूप से प्रेरित होता है। यह सतह की वक्रता एवं मीट्रिक गुणों की गणना की अनुमति देता है जैसे कि लंबाई एवं क्षेत्रफल परिवेशी स्थान के अनुरूप प्रथम मौलिक रूप रोमन अंक I द्वारा निरूपित किया जाता है।


परिभाषा

होने देना X(u, v) एक पैरामीट्रिक सतह हो। फिर दो स्पर्शरेखा सदिशों का आंतरिक उत्पाद है।

कहाँ E, F, एवं G पहले मौलिक रूप के गुणांक हैं।

पहले मौलिक रूप को सममित मैट्रिक्स के रूप में दर्शाया जा सकता है।


आगे का अंकन

जब प्रथम मौलिक रूप केवल एक तर्क के साथ लिखा जाता है, तो यह उस सदिश के आंतरिक उत्पाद को स्वयं के साथ दर्शाता है।

प्रथम मौलिक रूप अक्सर मीट्रिक टेंसर के आधुनिक अंकन में लिखा जाता है। गुणांक तब के रूप में लिखा जा सकता है gij:
इस टेन्सर के घटकों की गणना स्पर्शरेखा सदिशों के अदिश गुणनफल के रूप में की जाती है X1 एवं X2:
के लिए i, j = 1, 2. नीचे उदाहरण देखें।

लंबाई एवं क्षेत्रफल की गणना करना

प्रथम मौलिक रूप पूरी तरह से सतह के मीट्रिक गुणों का वर्णन करता है। इस प्रकार, यह सतह पर वक्रों की लंबाई एवं सतह पर क्षेत्रों के क्षेत्रों की गणना करने में सक्षम बनाता है। रेखा तत्व ds को पहले मौलिक रूप के गुणांकों के रूप में व्यक्त किया जा सकता है

शास्त्रीय क्षेत्र तत्व द्वारा दिया गया dA = |Xu × Xv| du dv लैग्रेंज की पहचान की सहायता से पहले मौलिक रूप के संदर्भ में व्यक्त किया जा सकता है,


उदाहरण: एक गोले पर वक्र

में इकाई क्षेत्र पर एक गोलाकार वक्र R3 के रूप में parametrized हो सकता है

फर्क X(u,v) इसके संबंध में u एवं v पैदावार
आंशिक डेरिवेटिव के डॉट उत्पाद को लेकर पहले मौलिक रूप के गुणांक पाए जा सकते हैं।

इसलिए:


गोले पर वक्र की लंबाई

इकाई क्षेत्र का भूमध्य रेखा द्वारा दिया गया एक पैरामीट्रिज्ड वक्र है

साथ t 0 से 2 तकπ. इस वक्र की लंबाई की गणना करने के लिए रेखा तत्व का उपयोग किया जा सकता है।


गोले पर एक क्षेत्र का क्षेत्रफल

क्षेत्र तत्व का उपयोग इकाई क्षेत्र के क्षेत्रफल की गणना करने के लिए किया जा सकता है।


गाऊसी वक्रता

किसी सतह की गॉसियन वक्रता किसके द्वारा दी जाती है

कहाँ L, M, एवं N दूसरे मूलभूत रूप के गुणांक हैं।

कार्ल फ्रेडरिक गॉस के प्रमेय एग्रेगियम में कहा गया है कि सतह के गॉसियन वक्रता को केवल पहले मौलिक रूप एवं इसके डेरिवेटिव के संदर्भ में व्यक्त किया जा सकता है, ताकि K वास्तव में सतह का आंतरिक अपरिवर्तनीय है। पहले मौलिक रूप के संदर्भ में गॉसियन वक्रता के लिए एक स्पष्ट अभिव्यक्ति गॉसियन वक्रता#Alternative_formulas द्वारा प्रदान की जाती है।

यह भी देखें

बाहरी संबंध