शिफ्ट प्रमेय

From Vigyanwiki

गणित में, घातांकी बदलाव प्रमेय बहुपद अवकल ऑपरेटरों (डी-संचालकों) और चरघातांकी फलन के बारे में एक प्रमेय के रूप में है। और इस प्रकार यह कुछ स्थितियों में डी-ऑपरेटरों के अनुसार घातांक प्रकार्य को खत्म करने की अनुमति देता है।

कथन

प्रमेय कहता है कि, यदि P(D) एक बहुपद D-संचालक के रूप में है, तो किसी भी पर्याप्त रूप से भिन्न फलन y के लिए इस रूप में दिखाया जाता है,

और इस प्रकार परिणाम को सिद्ध करने के लिए प्रेरण द्वारा आगे बढ़ते है और ध्यान दें कि केवल विशेष स्थिति के लिए इस रूप में होता है,

और इस प्रकार डी ऑपरेटरों की रैखिकता के बाद सामान्य परिणाम के रूप में से इसे सिद्ध करने की आवश्यकता होती है।

परिणाम n = 1 के लिए यह स्पष्ट रूप से सत्य है

अब मान लीजिए कि परिणाम n = k के लिए सही है, अर्थात,

तब,

यह प्रमाण को पूरा करता है।

शिफ्ट प्रमेय को व्युत्क्रम संचालकों के लिए समान रूप से अच्छी तरह से प्रयुक्त किया जा सकता है


संबंधित

लाप्लास परिवर्तन () के लिए शिफ्ट प्रमेय एक समान संस्करण के रूप में है


उदाहरण

घातांकी शिफ्ट प्रमेय का उपयोग फलन के उच्च अवकलज की गणना को गति देने के लिए किया जा सकता है, जो एक घातांकी और अन्य फलन के द्वारा दिया जाता है। उदाहरण के लिए यदि एक के पास वह है

घातांकी शिफ्ट प्रमेय का अन्य अनुप्रयोग रेखीय अवकल समीकरणों को हल करना है, जिनकी विशेषता समीकरण (कैलकुलस) में बार-बार जड़ें होती हैं।[1]


टिप्पणियाँ

  1. See the article homogeneous equation with constant coefficients for more details.


संदर्भ

  • Morris, Tenenbaum; Pollard, Harry (1985). Ordinary differential equations : an elementary textbook for students of mathematics, engineering, and the sciences. New York: Dover Publications. ISBN 0486649407. OCLC 12188701.