सापेक्ष जैविक प्रभावशीलता

From Vigyanwiki
Revision as of 17:22, 22 April 2023 by alpha>Saurabh



रेडियोजीवविज्ञान में, सापेक्ष जैविक प्रभावशीलता (अक्सर आरबीई के रूप में संक्षिप्त) एक प्रकार के आयनकारी विकिरण के जैविक प्रभावशीलता का अनुपात है, जो एक ही अवशोषित मात्रा दी गई है। आरबीई एक अनुभवजन्य मूल्य है जो आयनकारी विकिरण के प्रकार, शामिल ऊर्जा, कोशिका मृत्यु जैसे जैविक प्रभावों और ऊतकों के ऑक्सीजन तनाव या तथाकथित ऑक्सीजन प्रभाव के आधार पर भिन्न होता है।

चूंकि एक अल्फा कण की सीमा आमतौर पर एक एकल यूकेरियोटिक कोशिका के व्यास के बारे में होती है, ऊतक कोशिकाओं में उत्सर्जक परमाणु का सटीक स्थान महत्वपूर्ण हो जाता है।

आवेदन

अवशोषित मात्रा विकिरण के जैविक प्रभाव का एक खराब संकेतक हो सकता है, क्योंकि जैविक प्रभाव विकिरण के प्रकार, ऊर्जा और ऊतक के प्रकार सहित कई अन्य कारकों पर निर्भर हो सकता है। सापेक्ष जैविक प्रभावशीलता विकिरण के जैविक प्रभाव का बेहतर माप देने में मदद कर सकती है। एक ऊतक पर प्रकार आर के विकिरण के लिए सापेक्ष जैविक प्रभावशीलता को अनुपात के रूप में परिभाषित किया गया है

जहां घX एक मानक प्रकार X, और D के विकिरण की एक संदर्भ अवशोषित मात्रा हैR R प्रकार के विकिरण की अवशोषित मात्रा है जो समान मात्रा में जैविक क्षति का कारण बनती है। दोनों मात्रा कोशिकाओं में अवशोषित ऊर्जा की मात्रा से निर्धारित होती हैं।

विभिन्न प्रकार के विकिरणों की अलग-अलग जैविक प्रभावशीलता होती है, मुख्यतः क्योंकि वे अपनी ऊर्जा को अलग-अलग तरीकों से ऊतक में स्थानांतरित करते हैं। फोटॉन और बीटा कणों में एक कम रैखिक ऊर्जा हस्तांतरण (एलईटी) गुणांक होता है, जिसका अर्थ है कि वे ऊतक में परमाणुओं को आयनित करते हैं जो उनके पथ के साथ-साथ कई सौ नैनोमीटर (एक माइक्रोमीटर के कई दसवें हिस्से) से अलग होते हैं। इसके विपरीत, बहुत अधिक बड़े अल्फा कण और न्यूट्रॉन अपने जागरण में आयनित परमाणुओं का एक सघन निशान छोड़ते हैं, जो एक नैनोमीटर के दसवें हिस्से के अलावा (यानी, फोटॉन और बीटा कणों के लिए आयनीकरण के बीच सामान्य दूरी के एक हजारवें हिस्से से कम) के बीच होता है। .

आरबीई का उपयोग या तो कैंसर/वंशानुगत जोखिमों (रेडियोबायोलॉजी#स्टोचैस्टिक) या हानिकारक ऊतक प्रतिक्रियाओं (रेडियोबायोलॉजी डेटर्मिनिस्टिक) प्रभावों के लिए किया जा सकता है। प्रभाव के प्रकार के आधार पर ऊतकों में अलग-अलग आरबीई होते हैं। उच्च एलईटी विकिरण (यानी, अल्फा और न्यूट्रॉन) के लिए, नियतात्मक प्रभावों के लिए आरबीई स्टोकेस्टिक प्रभावों की तुलना में कम होते हैं।[1]

RBE की अवधारणा चिकित्सा में प्रासंगिक है, जैसे कि रेडियोलोजी और रेडियोथेरेपी में, और विभिन्न संदर्भों में रेडियोधर्मी संदूषण के जोखिमों और परिणामों के मूल्यांकन के लिए, जैसे कि परमाणु ऊर्जा संयंत्र संचालन, परमाणु ईंधन निपटान और पुनर्संसाधन, परमाणु हथियार, यूरेनियम खनन, और आयनीकरण आयनीकरण विकिरण निगरानी और जोखिम को नियंत्रित करना है।

विकिरण भार कारकों से संबंध (डब्ल्यूR)

एसआई इकाइयों में आईसीआरपी सुरक्षा मात्रा मात्रा

किसी अंग या ऊतक के समतुल्य मात्रा की गणना के प्रयोजनों के लिए, रेडियोलॉजिकल प्रोटेक्शन पर अंतर्राष्ट्रीय आयोग (ICRP) ने विकिरण भार कारक (WR) के एक मानक सेट को परिभाषित किया है।), जिसे पहले गुणवत्ता कारक (Q) कहा जाता था।[1][2] विकिरण भार कारक अवशोषित मात्रा (ग्रे (इकाई) एस या गैर-एसआई रेड (यूनिट) एस की एसआई इकाइयों में मापा जाता है) को विकिरण जोखिम के लिए औपचारिक जैविक समकक्ष मात्रा में परिवर्तित करते हैं (सीवर्ट या वास्तविक (इकाई) की इकाइयों में मापा जाता है)। हालाँकि, ICRP कहता है:[1]

उच्च विकिरण मात्रा की मात्रा निर्धारित करने या ऊतक प्रतिक्रियाओं [यानी, नियतात्मक प्रभाव] से संबंधित किसी भी उपचार की आवश्यकता पर निर्णय लेने के लिए समकक्ष मात्रा और प्रभावी मात्रा का उपयोग नहीं किया जाना चाहिए। ऐसे उद्देश्यों के लिए, मात्रा का मूल्यांकन अवशोषित मात्रा (ग्रे, Gy में) के संदर्भ में किया जाना चाहिए, और जहां उच्च-एलईटी विकिरण (जैसे, न्यूट्रॉन या अल्फा कण) शामिल हैं, एक उचित आरबीई के साथ भारित एक अवशोषित मात्रा का उपयोग किया जाना चाहिए।

विकिरण भार कारक काफी हद तक Radiobiology Stochastic के लिए विकिरण के RBE पर आधारित होते हैं। हालांकि, सादगी के लिए, विकिरण भार कारक ऊतक के प्रकार पर निर्भर नहीं होते हैं, और मूल्यों को बाहरी (कोशिका के बाहर) के संबंध में सबसे संवेदनशील सेल प्रकारों के लिए देखे गए प्रायोगिक मूल्यों के थोक से अधिक होने के लिए रूढ़िवादी रूप से चुना जाता है। ) स्रोत। भारी आयनों के आंतरिक स्रोतों, जैसे कि रिकॉइल न्यूक्लियस, के लिए विकिरण भार कारक विकसित नहीं किए गए हैं।

The ICRP 2007 standard values for relative effectiveness are given below. The higher radiation weighting factor for a type of radiation, the more damaging it is, and this is incorporated into the calculation to convert from gray to sievert units.

न्यूट्रॉन के लिए विकिरण भार कारक को समय के साथ संशोधित किया गया है और यह विवादास्पद बना हुआ है।
Radiation Energy WR (formerly Q)
x-rays, gamma rays, beta particles, muons 1
neutrons (< 1 MeV) 2.5 + 18.2e-[ln(E)]2/6
neutrons (1 - 50 MeV) 5.0 + 17.0e-[ln(2E)]2/6
neutrons (> 50 MeV) 2.5 + 3.25e-[ln(0.04E)]2/6
protons, charged pions 2
alpha particles, nuclear fission products, heavy nuclei 20

भौतिक ऊर्जा से जैविक प्रभाव तक जाने वाले विकिरण भार कारक को ऊतक भार कारक के साथ भ्रमित नहीं होना चाहिए। ऊतक भार कारकों का उपयोग शरीर में दिए गए ऊतक के बराबर मात्रा को एक प्रभावी मात्रा (विकिरण) में परिवर्तित करने के लिए किया जाता है, एक संख्या जो पूरे जीव को कुल खतरे का अनुमान प्रदान करती है, विकिरण मात्रा के परिणामस्वरूप शरीर का।

प्रायोगिक तरीके

फोटॉन (नीला वक्र) और कार्बन आयनों (लाल वक्र) द्वारा विकिरणित CHO-K1 सेल लाइन के लिए LD-30 सीमा।

आमतौर पर सापेक्ष जैविक प्रभावशीलता का मूल्यांकन संस्कृति माध्यम में विकसित विभिन्न प्रकार की जीवित कोशिकाओं पर किया जाता है, जिसमें प्रोकैरियोट कोशिकाएं जैसे जीवाणु , सरल यूकेरियोट कोशिकाएं जैसे एकल कोशिका वाले पौधे और चूहों जैसे जीवों से प्राप्त उन्नत यूकेरियोटिक कोशिकाएं शामिल हैं। मात्रा को LD-30 बिंदु पर समायोजित किया जाता है; यानी, उस राशि तक जिसके कारण 30% कोशिकाएं माइटोटिक विभाजन (या, बैक्टीरिया, बाइनरी विखंडन) से गुजरने में असमर्थ हो जाती हैं, इस प्रकार प्रभावी रूप से निष्फल हो जाती हैं - भले ही वे अभी भी अन्य सेलुलर कार्यों को पूरा कर सकें। LD-50 का आमतौर पर अधिक उपयोग किया जाता है, लेकिन जिसने भी प्लॉट खींचा, उसे यह एहसास नहीं हुआ कि लॉग प्लॉट पर 10 के कारकों के बीच आधे रास्ते के सबसे करीब ग्रिड लाइन वास्तव में 3 है, 5 नहीं। LD-50 मान वास्तव में कार्बन आयनों के लिए 1 ग्रे है और फोटॉन के लिए 3 ग्रे।

आरबीई मूल्यांकन में जिन आयनकारी विकिरणों पर सबसे अधिक विचार किया जाता है, वे हैं एक्स-रे और गामा विकिरण (दोनों फोटॉन से युक्त), अल्फा विकिरण (हीलियम -4 नाभिक), बीटा विकिरण (इलेक्ट्रॉन और पॉज़िट्रॉन), न्यूट्रॉन विकिरण और भारी परमाणु नाभिक, परमाणु विखंडन के टुकड़े सहित। कुछ प्रकार के विकिरण के लिए, आरबीई व्यक्तिगत कणों की ऊर्जा पर अत्यधिक निर्भर है।

ऊतक के प्रकार पर निर्भरता

शुरुआत में यह पाया गया कि एक्स-रे, गामा किरणें और बीटा विकिरण अनिवार्य रूप से सभी प्रकार की कोशिकाओं के लिए समान थे। इसलिए, मानक विकिरण प्रकार X आम तौर पर 250 इलेक्ट्रॉन वोल्ट फोटॉन या कोबाल्ट-60 गामा किरणों वाला एक एक्स-रे बीम होता है। नतीजतन, बीटा और फोटॉन विकिरण की सापेक्ष जैविक प्रभावशीलता अनिवार्य रूप से 1 है।

अन्य विकिरण प्रकारों के लिए, आरबीई एक अच्छी तरह से परिभाषित भौतिक मात्रा नहीं है, क्योंकि यह ऊतक के प्रकार और सेल के भीतर अवशोषण के सटीक स्थान के साथ कुछ भिन्न होता है। इस प्रकार, उदाहरण के लिए, अल्फा विकिरण के लिए आरबीई 2-3 है जब बैक्टीरिया पर मापा जाता है, 4-6 सरल यूकेरियोट सेल (जीव विज्ञान) के लिए, और 6-8 उच्च यूकेरियोटिक कोशिकाओं के लिए। एक स्रोत के अनुसार यह ओवोसाइट्स पर बहुत अधिक (संदर्भ के रूप में एक्स किरणों के साथ 6500) हो सकता है।[3] न्यूट्रॉन का आरबीई बैक्टीरिया के लिए 4-6, सरल यूकेरियोटिक कोशिकाओं के लिए 8-12 और उच्च यूकेरियोटिक कोशिकाओं के लिए 12-16 है।

स्रोत स्थान पर निर्भरता

शुरुआती प्रयोगों में, विकिरण के स्रोत विकिरणित कोशिकाओं के लिए सभी बाहरी थे। हालाँकि, चूंकि अल्फा कण मानव त्वचा की सबसे बाहरी मृत परत को पार नहीं कर सकते हैं, वे शरीर के अंदर परमाणुओं के क्षय से आने पर ही महत्वपूर्ण नुकसान कर सकते हैं। चूंकि एक अल्फा कण की सीमा आमतौर पर एक एकल यूकेरियोटिक कोशिका के व्यास के बारे में होती है, ऊतक कोशिकाओं में उत्सर्जक परमाणु का सटीक स्थान महत्वपूर्ण हो जाता है।

इस कारण से, यह सुझाव दिया गया है कि अल्फा उत्सर्जकों द्वारा संदूषण के स्वास्थ्य प्रभाव को काफी हद तक कम करके आंका जा सकता है। [4] बाहरी स्रोतों के साथ आरबीई के माप भी अल्फा क्षय के कारण मूल-नाभिक की पुनरावृत्ति के कारण होने वाले आयनीकरण की उपेक्षा करते हैं। जबकि क्षयकारी परमाणु के मूल-नाभिक की पुनरावृत्ति आमतौर पर अल्फा-कण की लगभग 2% ऊर्जा का वहन करती है जो क्षयकारी परमाणु द्वारा उत्सर्जित होती है, इसकी सीमा बहुत कम होती है (लगभग 2-3 एंगस्ट्रॉम), इसकी वजह से उच्च विद्युत आवेश और उच्च द्रव्यमान। संवेग के संरक्षण के कारण एक असतत गतिज ऊर्जा के साथ, एक अल्फा कण के उत्सर्जन पर, मूल नाभिक को पीछे हटने की आवश्यकता होती है। इस प्रकार, पीछे हटना -न्यूक्लियस से सभी आयनीकरण ऊर्जा अपने मूल स्थान के पास एक बहुत ही कम मात्रा में जमा होती है, आमतौर पर क्रोमोसोम पर सेल न्यूक्लियस में, जो भारी धातुओं के लिए एक आकर्षण है। [5][6][7] सेल के बाहर के स्रोतों का उपयोग करते हुए अधिकांश अध्ययनों ने आरबीई को 10 और 20 के बीच प्राप्त किया है।[8] चूंकि अल्फा कण की यात्रा से अधिकांश आयनीकरण क्षति कोशिका द्रव्य में जमा होती है, जबकि रिकॉइल-न्यूक्लियस की यात्रा डीएनए पर ही होती है, यह संभावना है कि अल्फा कण की तुलना में रिकॉइल न्यूक्लियस से अधिक नुकसान होता है। अपने आप।

इतिहास

1931 में, फ़ैला और हेनशॉ ने एक्स किरणों और γ किरणों की सापेक्ष जैविक प्रभावशीलता (RBE) के निर्धारण पर रिपोर्ट दी। यह 'आरबीई' शब्द का पहला प्रयोग प्रतीत होता है। लेखकों ने नोट किया कि आरबीई अध्ययन की जा रही प्रायोगिक प्रणाली पर निर्भर था। कुछ समय बाद, इसे ज़िर्कल एट अल द्वारा इंगित किया गया था। (1952) कि जैविक प्रभाव प्रदान की गई ऊर्जा के स्थानिक वितरण और आयनकारी कणों की प्रति इकाई पथ लंबाई में आयनीकरण के घनत्व पर निर्भर करता है। ज़िर्कल एट अल। रेडियोबायोलॉजी में स्टॉपिंग पावर के लिए इस्तेमाल होने के लिए 'रैखिक ऊर्जा हस्तांतरण (एलईटी)' शब्द गढ़ा, यानी एक आवेशित कण की प्रति यूनिट पथ लंबाई में ऊर्जा की हानि। इस अवधारणा को 1950 के दशक में पेश किया गया था, उस समय जब परमाणु हथियारों और परमाणु रिएक्टरों की तैनाती ने कृत्रिम रेडियोधर्मिता के जैविक प्रभावों पर शोध को गति दी थी। यह देखा गया था कि वे प्रभाव विकिरण के प्रकार और ऊर्जा स्पेक्ट्रम दोनों पर और जीवित ऊतक के प्रकार पर निर्भर थे। उस दशक में आरबीई निर्धारित करने के लिए पहला व्यवस्थित प्रयोग किया गया था।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 "The 2007 Recommendations of the International Commission on Radiological Protection". Annals of the ICRP. ICRP publication 103. 37 (2–4). 2007. ISBN 978-0-7020-3048-2. Retrieved 17 May 2012.
  2. Sinclair DW (January 2003). "सापेक्ष जैविक प्रभावशीलता (RBE), गुणवत्ता कारक (Q) और विकिरण भार कारक (Wr)". Annals of the ICRP. ICRP Publication 92. 33 (4). ISBN 978-0-08-044311-9.
  3. Nagasawa, H.; Little, J. B. (1992-11-15). "अल्फा-कणों की बेहद कम खुराक द्वारा बहन क्रोमैटिड एक्सचेंजों का प्रेरण". Cancer Research. 52 (22): 6394–6396. ISSN 0008-5472. PMID 1423287.
  4. Winters TH, Di Franza JR (February 1982). "सिगरेट पीने में रेडियोधर्मिता". The New England Journal of Medicine. 306 (6): 364–5. doi:10.1056/NEJM198202113060613. PMID 7054712.
  5. Zhu G, Zhang CY (December 2014). "भारी धातु आयन परख के लिए कार्यात्मक न्यूक्लिक एसिड-आधारित सेंसर". The Analyst. 139 (24): 6326–42. Bibcode:2014Ana...139.6326Z. doi:10.1039/C4AN01069H. PMID 25356810.
  6. Barton JK (1994). "Chapter 8: Metal/Nucleic-Acid Interactions" (PDF). In Bertini I, Gray HB, Lippard SJ, Valentine JS (eds.). जैव अकार्बनिक रसायन. Mill Valley, Calif.: Univ. Science Books. pp. 455–503. ISBN 0-935702-57-1.
  7. Kim S, Shin W, Warrant R (1985). "Heavy metal ion-nucleic acid interaction". जैविक मैक्रोमोलेक्यूल्स भाग ए के लिए विवर्तन विधियाँ. Methods in Enzymology. Vol. 114. pp. 156–67. doi:10.1016/0076-6879(85)14016-4. ISBN 978-0-12-182014-5.
  8. Chambers DB, Osborne RV, Garva AL (2006). "गैर-मानव बायोटा की खुराक के लिए अल्फा विकिरण भार कारक का चयन करना". Journal of Environmental Radioactivity. 87 (1): 1–14. doi:10.1016/j.jenvrad.2005.10.009. PMID 16377039.


बाहरी संबंध