वाष्पीकरण की तापीय धारिता
वाष्पीकरण की तापीय धारिता (प्रतीक ∆Hvap), जिसे वाष्पीकरण की (अव्यक्त) ऊष्मा या वाष्पीकरण की ऊष्मा के रूप में भी जाना जाता है, ऊर्जा की वह मात्रा (एन्थैल्पी) है, जिसे उस पदार्थ की मात्रा को गैस में परिवर्तित करने के लिए एक तरल पदार्थ में जोड़ा जाना चाहिए। वाष्पीकरण की एन्थैल्पी दबाव का एक कार्य है जिस पर रूपांतरण (वाष्पीकरण या वाष्पीकरण) होता है।
वाष्पीकरण की तापीय धारिता अधिकांशतः पदार्थ के सामान्य क्वथनांक के लिए उद्धृत किया जाता है। चूँकि सारणीबद्ध मानों को सामान्यतः 298 केल्विन तक संशोधित किया जाता है, लेकिन यह संशोधन अधिकांशतः मापे गए मान में अनिश्चितता से कम होता है।
वाष्पीकरण की ऊष्मा तापमान पर निर्भर होती है, चूँकि वाष्पीकरण की निरंतर ऊष्मा को छोटे तापमान रेंज और कम तापमान के लिए माना जा सकता है। बढ़ते तापमान के साथ वाष्पीकरण की ऊष्मा कम हो जाती है और यह निश्चित बिंदु पर पूरी तरह से लुप्त हो जाती है, जिसे महत्वपूर्ण तापमान () कहा जाता है। महत्वपूर्ण तापमान से ऊपर, तरल और वाष्प चरण अप्रभेद्य होते हैं, और पदार्थ को अत्यंत सूक्ष्म तरल कहा जाता है।
इकाइयां
मान सामान्यतः J/mol (इकाई), या kJ/mol (वाष्पीकरण की मोलर एन्थैल्पी) में उद्धृत किए जाते हैं, चूँकि kJ/kg, या J/g (वाष्पीकरण की विशिष्ट ऊष्मा), और पुरानी इकाइयां जैसे kcal/mol, cal/g और Btu/lb कभी-कभी दूसरों के बीच भी उपयोग किया जाता है।
संघनन की एन्थैल्पी
संक्षेपण की तापीय धारिता (या संघनन की ऊष्मा) परिभाषा के अनुसार विपरीत संकेत के साथ वाष्पीकरण की तापीय धारिता के बराबर है: वाष्पीकरण की तापीय धारिता परिवर्तन सदैव धनात्मक होते हैं (पदार्थ द्वारा ऊष्मा अवशोषित होती है), जबकि संघनन के तापीय धारिता परिवर्तन सदैव ऋणात्मक होते हैं (ऊष्मा पदार्थ द्वारा छोड़ी जाता है)।
थर्मोडायनामिक पृष्ठभूमि
वाष्पीकरण की तापीय धारिता के रूप में लिखा जा सकता है
यह तरल चरण की तुलना में वाष्प चरण की बढ़ी हुई आंतरिक ऊर्जा के बराबर है, साथ ही परिवेशी दबाव के विरुद्ध किए गए कार्य के बराबर है। आंतरिक ऊर्जा में वृद्धि को तरल (या ठोस, उर्ध्वपातन (रसायन विज्ञान) के मामले में) में रासायनिक बंधन # इंटरमॉलिक्युलर इंटरैक्शन को दूर करने के लिए आवश्यक ऊर्जा के रूप में देखा जा सकता है। इसलिए हीलियम में वाष्पीकरण की विशेष रूप से कम एन्थैल्पी, 0.0845 kJ/mol होती है, क्योंकि हीलियम परमाणुओं के बीच वैन डेर वाल्स बल विशेष रूप से कमजोर होते हैं। दूसरी ओर, तरल [[पानी (अणु)]] में अणुओं को अपेक्षाकृत मजबूत हाइड्रोजन बंध द्वारा एक साथ रखा जाता है, और इसकी वाष्पीकरण की तापीय धारिता, 40.65 kJ/mol, 0 से पानी की समान मात्रा को गर्म करने के लिए आवश्यक ऊर्जा से पांच गुना से अधिक है। °C से 100 °C (ताप क्षमता|cp= 75.3 J/K·mol). चूँकि, इंटरमॉलिक्युलर बलों की ताकत को मापने के लिए वाष्पीकरण की एन्थैल्पी का उपयोग करते समय सावधानी बरतनी चाहिए, क्योंकि ये बल गैस चरण में हद तक बने रह सकते हैं (जैसा कि हाइड्रोजिन फ्लोराइड के मामले में होता है), और इसलिए बॉन्ड का परिकलित मूल्य ताकत बहुत कम होगी। यह धातुओं के बारे में विशेष रूप से सच है, जो अधिकांशतः गैस चरण में सहसंयोजक बंध अणु बनाते हैं: इन मामलों में, बंधन ऊर्जा का सही मूल्य प्राप्त करने के लिए परमाणुकरण एन्थैल्पी का उपयोग किया जाना चाहिए।
वैकल्पिक विवरण यह है कि संघनन की एन्थैल्पी को उस ऊष्मा के रूप में देखा जाए जिसे किसी गैस के द्रव में संघनित होने पर एन्ट्रापी में गिरावट की भरपाई के लिए परिवेश में छोड़ा जाना चाहिए। चूँकि द्रव और गैस क्वथनांक पर रासायनिक साम्य में होते हैं (Tb), गिब्स मुक्त ऊर्जा|Δvजी = 0, जिसके परिणामस्वरूप:
चूंकि तापमान के साथ न तो एन्ट्रापी और न ही एन्थैल्पी बहुत भिन्न होती है, इसलिए 298 K से तापमान में अंतर के लिए बिना किसी संशोधन के सारणीबद्ध मानक मानों का उपयोग करना सामान्य है। यदि दबाव 100 पास्कल (इकाई) से भिन्न है, तो संशोधन किया जाना चाहिए, क्योंकि गैस की एन्ट्रापी उसके दबाव के समानुपाती होती है (या, अधिक स्पष्ट रूप से, इसकी उग्रता के लिए)। तरल पदार्थ की एन्ट्रापी दबाव के साथ बहुत कम भिन्न होती है, क्योंकि तरल की संपीड्यता छोटी होती है।
ये दो परिभाषाएँ समतुल्य हैं: क्वथनांक वह तापमान है जिस पर गैस चरण की बढ़ी हुई एन्ट्रापी इंटरमॉलिक्युलर बलों पर प्रभावी हो जाती है। चूंकि पदार्थ की दी गई मात्रा में संघनित चरण की तुलना में गैस चरण में सदैव उच्च एन्ट्रापी होती है ( सदैव सकारात्मक होता है), और इस से
गिब्स मुक्त ऊर्जा परिवर्तन बढ़ते तापमान के साथ गिरता है: गैसों को उच्च तापमान पर पसंद किया जाता है, जैसा कि अभ्यास में देखा गया है।
इलेक्ट्रोलाइट विलयनों की वाष्पीकरण एन्थैल्पी
इलेक्ट्रोलाइट विलयनों के वाष्पीकरण की एन्थैल्पी का अनुमान केवल रासायनिक उष्मागतिकीय मॉडल, जैसे पित्जर मॉडल या टीसीपीसी मॉडल के आधार पर समीकरणों का उपयोग करके किया जा सकता है।[1][2]
चयनित मान
तत्व
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group → | ||||||||||||||||||||
↓ Period | ||||||||||||||||||||
1 | H0.44936 | He0.0845 | ||||||||||||||||||
2 | Li145.92 | Be292.40 | B489.7 | C355.8 | N2.7928 | O3.4099 | F3.2698 | Ne1.7326 | ||||||||||||
3 | Na96.96 | Mg127.4 | Al293.4 | Si300 | P12.129 | S1.7175 | Cl10.2 | Ar6.447 | ||||||||||||
4 | K79.87 | Ca153.6 | Sc314.2 | Ti421 | V452 | Cr344.3 | Mn226 | Fe349.6 | Co376.5 | Ni370.4 | Cu300.3 | Zn115.3 | Ga258.7 | Ge330.9 | As34.76 | Se26.3 | Br15.438 | Kr9.029 | ||
5 | Rb72.216 | Sr144 | Y363 | Zr581.6 | Nb696.6 | Mo598 | Tc660 | Ru595 | Rh493 | Pd357 | Ag250.58 | Cd100 | In231.5 | Sn295.8 | Sb77.14 | Te52.55 | I20.752 | Xe12.636 | ||
6 | Cs67.74 | Ba142 | Lun/a | Hf575 | Ta743 | W824 | Re715 | Os627.6 | Ir604 | Pt510 | Au334.4 | Hg59.229 | Tl164.1 | Pb177.7 | Bi104.8 | Po60.1 | At27.2 | Rn16.4 | ||
7 | Frn/a | Ra37 | Lrn/a | Rfn/a | Dbn/a | Sgn/a | Bhn/a | Hsn/a | Mtn/a | Dsn/a | Rgn/a | Cnn/a | Nhn/a | Fln/a | Mcn/a | Lvn/a | Tsn/a | Ogn/a | ||
La414 | Ce414 | Prn/a | Ndn/a | Pmn/a | Smn/a | Eun/a | Gdn/a | Tbn/a | Dyn/a | Hon/a | Ern/a | Tmn/a | Ybn/a | |||||||
Acn/a | Th514.4 | Pan/a | Un/a | Npn/a | Pun/a | Amn/a | Cmn/a | Bkn/a | Cfn/a | Esn/a | Fmn/a | Mdn/a | Non/a | |||||||
Enthalpy in kJ/mol, measured at their respective normal boiling points | ||||||||||||||||||||
0–10 kJ/mol | 10–100 kJ/mol | 100–300 kJ/mol | >300 kJ/mol |
धातुओं का वाष्पीकरण धातु वाष्प संश्लेषण में महत्वपूर्ण चरण है, जो थोक तत्वों के सापेक्ष धातु के परमाणुओं या छोटे कणों की बढ़ती प्रतिक्रियाशीलता का शोषण करता है।
अन्य सामान्य पदार्थ
सामान्य पदार्थों के वाष्पीकरण की तापीय धारिता, उनके संबंधित मानक क्वथनांक पर मापी जाती है:
यौगिक | क्वथनांक, सामान्य दबाव पर | वाष्पीकरण का ताप | |||
---|---|---|---|---|---|
(K) | (°C) | (°F) | (J/mol) | (J/g) | |
एसीटोन | 329 | 56 | 133 | 31300 | 538.9 |
एल्यूमीनियम | 2792 | 2519 | 4566 | 294000 | 10500 |
अमोनिया | 240 | −33.34 | −28 | 23350 | 1371 |
ब्यूटेन | 272–274 | −1 | 30–34 | 21000 | 320 |
डायइथाइल इथर | 307.8 | 34.6 | 94.3 | 26170 | 353.1 |
इथेनॉल | 352 | 78.37 | 173 | 38600 | 841 |
हाइड्रोजन (पैराहाइड्रोजन) | 20.271 | −252.879 | −423.182 | 899.2 | 446.1 |
आयरन | 3134 | 2862 | 5182 | 340000 | 6090 |
आइसोप्रोपाइल एल्कोहल | 356 | 82.6 | 181 | 44000 | 732.2 |
मीथेन | 112 | −161 | −259 | 8170 | 480.6 |
मेथनॉल | 338 | 64.7 | 148 | 35200[3] | 1104 |
प्रोपेन | 231 | −42 | −44 | 15700 | 356 |
फॉस्फीन | 185 | −87.7 | −126 | 14600 | 429.4 |
जल | 373.15 | 100 | 212 | 40660 | 2257 |
यह भी देखें
- क्लॉसियस-क्लैपेरॉन संबंध
- शिमांस्की समीकरण, वाष्पीकरण की ऊष्मा की तापमान निर्भरता का वर्णन करता है।
- संलयन की तापीय धारिता, पिघलने की विशिष्ट ऊष्मा
- उर्ध्वपातन की एन्थैल्पी
- जॉबैक विधि, आणविक संरचनाओं से सामान्य क्वथनांक पर वाष्पीकरण की ऊष्मा का अनुमान
- अव्यक्त ऊष्मा
संदर्भ
- ↑ Ge, Xinlei; Wang, Xidong (20 May 2009). "हिमांक अवनमन, क्वथनांक उन्नयन, और इलेक्ट्रोलाइट समाधानों के वाष्पीकरण एन्थैल्पी का अनुमान". Industrial & Engineering Chemistry Research. 48 (10): 5123. doi:10.1021/ie900434h.
- ↑ Ge, Xinlei; Wang, Xidong (2009). "एक संशोधित तीन-विशेषता वाले पैरामीटर सहसंबंध मॉडल द्वारा हिमांक अवनमन, क्वथनांक उन्नयन, वाष्प दाब और इलेक्ट्रोलाइट विलयनों के वाष्पीकरण की एन्थैल्पी की गणना". Journal of Solution Chemistry. 38 (9): 1097–1117. doi:10.1007/s10953-009-9433-0. ISSN 0095-9782. S2CID 96186176.
- ↑ NIST
- CODATA Key Values for Thermodynamics
- Gmelin, Leopold (1985). Gmelin-Handbuch der anorganischen Chemie / 08 a (8., völlig neu bearb. Aufl. ed.). Berlin [u.a.]: Springer. pp. 116–117. ISBN 978-3-540-93516-2.
- NIST Chemistry WebBook
- Young, Francis W. Sears, Mark W. Zemansky, Hugh D. (1982). University physics (6th ed.). Reading, Mass.: Addison-Wesley. ISBN 978-0-201-07199-3.
{{cite book}}
: CS1 maint: multiple names: authors list (link)