मुक्त बीजगणित

From Vigyanwiki
Revision as of 19:08, 25 April 2023 by alpha>Indicwiki (Created page with "{{About|free algebras in ring theory|the more general free algebras in universal algebra|Free object}} {{Ring theory sidebar}} गणित में, विशेष रू...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, विशेष रूप से अमूर्त बीजगणित के क्षेत्र में जिसे अंगूठी सिद्धांत के रूप में जाना जाता है, एक मुक्त बीजगणित एक बहुपद वलय का गैर-अनुवर्ती एनालॉग है क्योंकि इसके तत्वों को गैर-कम्यूटिंग चर के साथ बहुपद के रूप में वर्णित किया जा सकता है। इसी तरह, बहुपद वलय को एक मुक्त क्रमविनिमेय बीजगणित माना जा सकता है।

परिभाषा

R के लिए एक क्रमविनिमेय वलय, मुक्त (सहयोगी, इकाई बीजगणित) बीजगणित (अंगूठी सिद्धांत) n अनिश्चित (चर) s {X पर1,...,एक्सn} मुफ्त मॉड्यूल है | मुफ्त आर-मॉड्यूल जिसका आधार वर्णमाला {X पर सभी शब्द (गणित) है1,...,एक्सn} (खाली शब्द सहित, जो मुक्त बीजगणित की इकाई है)। यह आर-मॉड्यूल एक बीजगणित (रिंग थ्योरी) बन जाता है | आर-बीजगणित एक गुणन को निम्नानुसार परिभाषित करता है: दो आधार तत्वों का उत्पाद संबंधित शब्दों का संयोजन है:

और इस प्रकार दो मनमाना आर-मॉड्यूल तत्वों का उत्पाद विशिष्ट रूप से निर्धारित होता है (क्योंकि आर-बीजगणित में गुणन आर-बिलिनियर होना चाहिए)। इस R-बीजगणित को R⟨X दर्शाया गया है1,...,एक्सn⟩। इस निर्माण को आसानी से एक मनमाना सेट X के अनिश्चित सेट के लिए सामान्यीकृत किया जा सकता है।

संक्षेप में, एक मनमाना सेट के लिए , मुक्त (साहचर्य, इकाई बीजगणित) आर-बीजगणित (अंगूठी सिद्धांत) एक्स पर है

आर-बिलिनियर गुणन के साथ जो शब्दों पर संयोजन है, जहां एक्स * एक्स पर मुक्त मोनोइड को दर्शाता है (अर्थात अक्षर एक्स पर शब्दi), मॉड्यूल के बाहरी प्रत्यक्ष योग को दर्शाता है, और आरडब्ल्यू मुक्त मॉड्यूल को दर्शाता है। 1 तत्व पर मुफ्त आर-मॉड्यूल, शब्द डब्ल्यू।

उदाहरण के लिए, R⟨X में1,एक्स2,एक्स3,एक्स4⟩, स्केलर α, β, γ, δ ∈ R के लिए, दो तत्वों के उत्पाद का एक ठोस उदाहरण है

.

गैर-कम्यूटेटिव बहुपद अंगूठी को एक्स में सभी परिमित शब्दों के मुक्त मोनोइड के आर पर मोनॉइड रिंग के साथ पहचाना जा सकता है।i.

बहुपदों के साथ तुलना

चूंकि वर्णमाला के ऊपर के शब्द {X1, ...,एक्सn} R⟨X का आधार बनता है1,...,एक्सn⟩, यह स्पष्ट है कि R⟨X का कोई भी तत्व1, ...,एक्सn⟩ को विशिष्ट रूप में लिखा जा सकता है:

कहाँ R के अवयव हैं और अंतत: इनमें से बहुत से अवयव शून्य हैं। यह बताता है कि R⟨X के तत्व क्यों हैं1,...,एक्सn⟩ को अक्सर चर (या अनिश्चित) X में गैर-कम्यूटेटिव बहुपद के रूप में दर्शाया जाता है1,...,एक्सn; अवयव इन बहुपदों और R-बीजगणित R⟨X के गुणांक कहे जाते हैं1,...,एक्सn⟩ को n indeterminates में R के ऊपर गैर-कम्यूटेटिव बहुपद बीजगणित कहा जाता है। ध्यान दें कि एक वास्तविक बहुपद रिंग के विपरीत, चर क्रमविनिमेय संचालन नहीं करते हैं। उदाहरण के लिए, एक्स1X2 X के बराबर नहीं है2X1.

अधिक आम तौर पर, जनरेटिंग सेट के किसी भी सेट ई पर मुक्त बीजगणित R⟨E⟩ का निर्माण किया जा सकता है। चूँकि छल्ले को 'Z'-अलजेब्रस के रूप में माना जा सकता है, E पर एक 'फ्री रिंग' को मुक्त बीजगणित 'Z'⟨E⟩ के रूप में परिभाषित किया जा सकता है।

एक क्षेत्र (गणित) पर, एन अनिश्चित पर मुक्त बीजगणित को एन-आयामी वेक्टर अंतरिक्ष पर टेंसर बीजगणित के रूप में बनाया जा सकता है। अधिक सामान्य गुणांक रिंग के लिए, वही निर्माण कार्य करता है यदि हम n जनरेटिंग सेट पर मुफ्त मॉड्यूल लेते हैं।

ई पर मुक्त बीजगणित का निर्माण प्रकृति में कार्यात्मक है और उपयुक्त सार्वभौमिक संपत्ति को संतुष्ट करता है। मुक्त बीजगणित फ़ैक्टर को आर-एलजेब्रा की श्रेणी से सेट की श्रेणी में भुलक्कड़ ऑपरेटर के पास छोड़ दिया जाता है।

विभाजन वलय पर मुक्त बीजगणित मुक्त आदर्श वलय हैं।

यह भी देखें

संदर्भ

  • Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications. Vol. 137. Cambridge: Cambridge University Press. ISBN 978-0-521-19022-0. Zbl 1250.68007.
  • L.A. Bokut' (2001) [1994], "Free associative algebra", Encyclopedia of Mathematics, EMS Press