रैखिक असमानता

From Vigyanwiki
Revision as of 12:35, 16 May 2023 by Indicwiki (talk | contribs) (3 revisions imported from alpha:रैखिक_असमानता)

गणित में एक रैखिक असमानता इस प्रकार की असमानता (गणित) है जिसमें एक रैखिक कार्य सम्मिलित होता है। एक रेखीय असमानता में निम्नलिखित असमानता के प्रतीकों में से एक होता है:[1]

  • < से कम
  • > से अधिक
  • ≤ से कम या इसके बराबर
  • ≥ से अधिक या इसके बराबर
  • ≠ के बराबर नहीं

एक रेखीय असमानता बिल्कुल एक रेखीय समीकरण की तरह दिखती है, जिसमें असमानता का चिह्न समानता के चिह्न को प्रतिस्थापित करता है।

वास्तविक संख्याओं की रेखीय असमानताएँ

द्वि-आयामी रैखिक असमानताएँ

रैखिक असमानता का ग्राफ:
x + 3y < 9

द्वि-आयामी रैखिक असमानताएँ प्रपत्र के दो चरों में व्यंजक हैं:

जहां असमानताएं या तो जटिल हो सकती हैं या सामान्य। इस तरह की असमानता के सरलीकरण समुच्चय को यूक्लिडियन समतल में अर्ध समतल (एक निश्चित रेखा के एक तरफ के सभी बिंदुओं) द्वारा रेखाचित्रण रूप से दर्शाया जा सकता है।[2] वह रेखा जो अर्ध-तलों (ax + by = c) को निर्धारित करती है, वह असमानता के जटिल होने पर सरलीकरण समुच्चय में सम्मिलित नहीं होती है। सरलीकरण समुच्चय में कौन सा अर्ध समतल है यह निर्धारित करने के लिए एक सरल प्रक्रिया एक बिंदु (x) पर ax + by के मान (x0, y0) की गणना करना है जो कि रेखा पर नहीं है और इस प्रकार यह देखना कि असमानता संतुष्ट है या नहीं।

उदाहरण के लिए,[3] x + 3y < 9 का सरलीकरण समुच्चय निकालने के लिए, सबसे पहले समीकरण x + 3y = 9 के साथ बिंदीदार रेखा खींची जाती है, यह इंगित करने के लिए कि रेखा सरलीकरण समुच्चय में सम्मिलित नहीं है क्योंकि असमानता जटिल है। फिर, रेखा पर एक सुविधाजनक बिंदु चुनें, जैसे कि (0,0), चूंकि 0 + 3(0) = 0 < 9, यह बिंदु सरलीकरण समुच्चय में है, इसलिए इस बिंदु को सम्मिलित करने वाला अर्ध समतल (रेखा के नीचे का अर्ध समतल) इस रैखिक असमानता का सरलीकरण समुच्चय है।

सामान्य आयामों में रेखीय असमानताएं

Rn में रैखिक असमिकाएँ वे व्यंजक हैं जिन्हें इस रूप में लिखा जा सकता है

या जहाँ f एक रेखीय रूप है (जिसे रेखीय फलन भी कहा जाता है), और b एक स्थिर वास्तविक संख्या है।

अधिक जटिल रूप से, इसे इस रूप में लिखा जा सकता है

या

यहाँ अज्ञात कहलाते हैं, और गुणांक कहलाते हैं।

वैकल्पिक रूप से, इन्हें इस रूप में लिखा जा सकता है

या जहां g एक अफ्फीन फलन है।[4]

वह है

या

ध्यान दें कि किसी भी असमानता में से अधिक या उससे अधिक या बराबर चिह्न वाली असमानता को कम या उससे कम या बराबर चिह्न के साथ फिर से लिखा जा सकता है, इसलिए उन संकेतों का उपयोग करके रैखिक असमानताओं को परिभाषित करने की कोई आवश्यकता नहीं है।

रैखिक असमानताओं की प्रणाली

रैखिक असमानताओं की एक प्रणाली समान चरों में रैखिक असमानताओं का एक समूह है:

यहाँ अज्ञात हैं, प्रणाली के गुणांक हैं, और स्थिर पद हैं।

इसे संक्षेप में आव्यूह (गणित) असमानता के रूप में लिखा जा सकता है

जहाँ A एक m×n आव्यूह है, x चरों का एक n×1 स्तंभ सदिश है, और b स्थिरांकों का एक m×1 स्तंभ सदिश है।[citation needed]

उपरोक्त प्रणालियों में जटिल और गैर-जटिल असमानताओं का उपयोग किया जा सकता है।

  • रैखिक असमानताओं की सभी प्रणालियों के सरलीकरण नहीं होते हैं।

फूरियर-मोट्ज़किन उन्मूलन का उपयोग करके रैखिक असमानताओं की प्रणालियों से चर को समाप्त किया जा सकता है।[5]


अनुप्रयोग

बहुकोणीय आकृति

एक वास्तविक रेखीय असमानता के सरलीकरण के समुच्चय में 'n'-आयामी वास्तविक स्थान का अर्ध-स्थान (ज्यामिति) होता है, जो संबंधित रैखिक समीकरण द्वारा परिभाषित दो में से एक है।

रैखिक असमानताओं की एक प्रणाली के सरलीकरण का समुच्चय व्यक्तिगत असमानताओं द्वारा परिभाषित अर्ध-स्थानों के प्रतिच्छेदन से समानता रखता है। जो कि इंगित करने के लिए है कि रेखा सरलीकरण समुच्चय में सम्मिलित नहीं है क्योंकि असमानता जटिल है। यह एक उत्तल समुच्चय है, क्योंकि अर्ध स्थान उत्तल समुच्चय हैं, और उत्तल समुच्चयों के एक समुच्चय का प्रतिच्छेदन भी उत्तल है। गैर-पतित सन्दर्भों में यह उत्तल समुच्चय एक उत्तल बहुकोणीय आकृति है (संभवतः अबाधित उदाहरण के लिए अर्ध स्थान, दो समानांतर अर्ध-रिक्त स्थान या बहुफलकीय शंकु के बीच एक स्लैब)। यह रिक्त भी हो सकता है या निचले आयाम का एक उत्तल बहुकोणीय आकृति भी हो सकता है जो n-विमीय समतल 'Rn' के एक अफ्फीन उपक्षेत्र तक सीमित हो।

रैखिक प्रोग्रामिंग

एक रैखिक प्रोग्रामिंग समस्या चर पर कई बाधाओं के अधीन एक फलन (अधिकतम या न्यूनतम मान ढूंढें) को अनुकूलित करने का प्रयास करता है, जो सामान्य रूप से रैखिक असमानताएं हैं।[6] रैखिक असमानताओं की सभी प्रणालियों के सरलीकरण नहीं होते हैं। बाधाओं की सूची रैखिक असमानताओं की एक प्रणाली है।

सामान्यीकरण

उपरोक्त परिभाषा के लिए जोड़, गुणा और तुलना (गणित) के सुपरिभाषित संक्रियाओं की आवश्यकता है; इसलिए, एक रेखीय असमानता की धारणा को क्रमबद्ध वलयों और विशेष रूप से आदेशित क्षेत्र तक विस्तारित किया जा सकता है।

संदर्भ

  1. Miller & Heeren 1986, p. 355
  2. Technically, for this statement to be correct both a and b can not simultaneously be zero. In that situation, the solution set is either empty or the entire plane.
  3. Angel & Porter 1989, p. 310
  4. In the 2-dimensional case, both linear forms and affine functions are historically called linear functions because their graphs are lines. In other dimensions, neither type of function has a graph which is a line, so the generalization of linear function in two dimensions to higher dimensions is done by means of algebraic properties and this causes the split into two types of functions. However, the difference between affine functions and linear forms is just the addition of a constant.
  5. Gärtner, Bernd; Matoušek, Jiří (2006). Understanding and Using Linear Programming. Berlin: Springer. ISBN 3-540-30697-8.
  6. Angel & Porter 1989, p. 373


स्रोत

बाहरी संबंध