चक्रीय मॉड्यूल
From Vigyanwiki
गणित में, विशेष रूप से रिंग सिद्धांत में, एक चक्रीय मॉड्यूल या मोनोजेनस मॉड्यूल[1] एक मॉड्यूल (गणित) है जो एक तत्व द्वारा उत्पन्न होता है। अवधारणा एक चक्रीय समूह की धारणा का एक सामान्यीकरण है, जो कि एक एबेलियन समूह (जिससे जेड-मॉड्यूल) है जो एक तत्व द्वारा उत्पन्न होता है।
परिभाषा
एक बाएं R-मॉड्यूल M को 'चक्रीय' कहा जाता है यदि M को एक तत्व द्वारा उत्पन्न किया जा सकता है अर्थात M = (x) = Rx = {rx | r ∈ R} M में कुछ x के लिए। इसी तरह, एक सही R-मॉड्यूल एन चक्रीय है यदि N = yR कुछ y ∈ N के लिए है|
उदाहरण
- Z-मॉड्यूल के रूप में 2Z एक चक्रीय मॉड्यूल है।
- वास्तव में, प्रत्येक चक्रीय समूह एक चक्रीय Z-मॉड्यूल है।
- हर सरल मॉड्यूल 'R'-मॉड्यूल 'M ' एक चक्रीय मॉड्यूल है क्योंकि 'M ' के किसी भी गैर-शून्य तत्व 'x ' द्वारा उत्पन्न submodule आवश्यक रूप से संपूर्ण मॉड्यूल 'M ' है '। सामान्यतः , एक मॉड्यूल सरल होता है यदि और केवल यदि यह गैर-शून्य है और इसके प्रत्येक गैर-शून्य तत्वों द्वारा उत्पन्न होता है।[2]
- यदि रिंग R को अपने ऊपर एक बाएं मॉड्यूल के रूप में माना जाता है, तो इसके चक्रीय उपमॉड्यूल रिंग के रूप में इसके बाएं प्रमुख आदर्श हैं। R के लिए एक सही R-मॉड्यूल के रूप में भी यही है, यथोचित परिवर्तनों के रूप में समान है।
- यदि R, F [x] है, एक क्षेत्र (गणित) F पर बहुपदों का वलय, और V एक R-मॉड्यूल है जो एक आयाम (रैखिक बीजगणित) भी है। F पर परिमित-आयामी सदिश स्थल, तो जॉर्डन ब्लॉक करता है V पर अभिनय करने वाले x चक्रीय उपमॉड्यूल हैं। (जॉर्डन ब्लॉक सभी समरूपतावाद हैं F[x] / (x − λ)n; अलग-अलग एनीहिलेटर (रिंग सिद्धांत ) के साथ अन्य चक्रीय उपमॉड्यूल भी हो सकते हैं; नीचे देखें।)
गुण
- एक चक्रीय R-मॉड्यूल M दिया गया है जो x द्वारा उत्पन्न होता है, M और के बीच एक विहित समरूपता उपस्थित है R / AnnR x, जहाँ AnnR x R में x के समुच्छेदक को दर्शाता है।
- प्रत्येक मॉड्यूल चक्रीय उपमॉड्यूल का योग है।[3]
तो इसके चक्रीय उपमॉड्यूल रिंग के रूप में इसके बाएं प्रमुख आदर्श हैं। R
यह भी देखें
- अंतिम रूप से उत्पन्न मॉड्यूल
संदर्भ
- ↑ Bourbaki, Algebra I: Chapters 1–3, p. 220
- ↑ Anderson & Fuller 1992, Just after Proposition 2.7.
- ↑ Anderson & Fuller 1992, Proposition 2.7.
- Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2 ed.), New York: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN 0-387-97845-3, MR 1245487
- B. Hartley; T.O. Hawkes (1970). Rings, modules and linear algebra. Chapman and Hall. pp. 77, 152. ISBN 0-412-09810-5.
- Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, pp. 147–149, ISBN 978-0-201-55540-0, Zbl 0848.13001