घूर्णन-लहर सन्निकटन

From Vigyanwiki

घूर्णन-लहर सन्निकटन परमाणु प्रकाशिकी और परमाणु चुंबकीय अनुनाद में प्रयुक्त एक सन्निकटन है। इस सन्निकटन में, हैमिल्टनियन (परिमाण यांत्रिकी) में शब्द जो तीव्रता से दोलन करते हैं, वे उपेक्षित हैं। यह एक वैध सन्निकटन है जब लागू विद्युत चुम्बकीय विकिरण एक परमाणु परिवर्तन के साथ अनुनाद के निकट है, और तीव्रता कम है।[1] स्पष्ट रूप से, हैमिल्टनियन में शब्द जो आवृत्तियों के साथ दोलन करते हैं वे उपेक्षित हैं, जबकि 0 आवृत्तियों के साथ दोलन करने वाले पदों को रखा जाता है, जहाँ प्रकाश आवृत्ति है, और एक परिवर्तन आवृत्ति है।

जैसा कि नीचे दिखाया गया है, अंतःक्रिया चित्र में हैमिल्टनियन के रूप से सन्निकटन का नाम उपजा है। इस तस्वीर पर परिवर्तन करके संबंधित परमाणु हैमिल्टनियन के कारण एक परमाणु का विकास प्रणाली डिरैक चिन्हांकन में अवशोषित हो जाता है, केवल प्रकाश क्षेत्र के साथ परमाणु की पारस्परिक प्रभाव के कारण विकास को छोड़कर विचार किया जाता है। यह इस तस्वीर में है कि पहले उल्लेखित तीव्रता से दोलन करने वाले शब्दों की उपेक्षा की जा सकती है। चूँकि कुछ अर्थों में अंतःक्रियात्मक चित्र को प्रणाली केट के साथ घूमने के बारे में सोचा जा सकता है, केवल विद्युत चुम्बकीय तरंग का वह भाग जो लगभग सह-घूर्णन रखता है; प्रतिघूर्णी घटक को छोड़ दिया जाता है।

घूर्णन-लहर सन्निकटन, दीर्घकालिक सन्निकटन से निकटता से संबंधित है, लेकिन इससे भिन्न\ भी है।[2]


गणितीय सूत्रीकरण

सादगी के लिए जमीनी अवस्था और उत्तेजित अवस्था वाले दो-स्तरीय परमाणु प्रणाली और , क्रमशः (डिरैक चिन्हांकन का उपयोग करके) पर विचार करें। मान लीजिए कि अवस्थाओं के बीच ऊर्जा का अंतर है ताकि तंत्र की परिवर्तन आवृत्ति हो। तब परमाणु के अविचलित हैमिल्टनियन (परिमाण यांत्रिकी) को निम्न रूप में लिखा जा सकता है

.

मान लीजिए कि परमाणु आवृत्ति के बाहरी पारम्परिक विद्युत क्षेत्र का अनुभव करता है, जो द्वारा दिए गए हैं; उदाहरण के लिए, एक समतल तरंग स्थल में फैलती है। फिर द्विध्रुवीय # टोक़ के तहत एक द्विध्रुवीय पर परमाणु और विद्युत क्षेत्र के बीच पारस्परिक प्रभाव हैमिल्टन को व्यक्त किया जा सकता है

,

कहाँ परमाणु का परिवर्तन द्विध्रुवीय क्षण है। परमाणु-प्रकाश प्रणाली के लिए कुल हैमिल्टनियन इसलिए है परमाणु के पास एक द्विध्रुव क्षण नहीं होता है जब वह एक ऊर्जा ईजेनस्टेट में होता है, इसलिए इसका मतलब है कि परिभाषित करना द्विध्रुवीय ऑपरेटर को इस रूप में लिखे जाने की अनुमति देता है

(साथ जटिल संयुग्म को दर्शाते हुए)। # व्युत्पत्ति

कहाँ रबी आवृत्ति है और प्रति-घूर्णन आवृत्ति है। यह देखने के लिए कि क्यों शर्तों को प्रतिघूर्णी कहा जाता है, जहां पारस्परिक प्रभाव की तस्वीर के लिए एक एकात्मक परिवर्तन पर विचार किया जाता है, जहां हैमिल्टनियन रूपांतरित होता है द्वारा दिया गया है

कहाँ प्रकाश क्षेत्र और परमाणु के बीच detuning है।

सन्निकटन करना

(नीला) और बिना (हरा) घूर्णन-लहर सन्निकटन लागू करने वाले ड्राइविंग क्षेत्र के साथ अनुनाद पर दो-स्तरीय-प्रणाली।

यह वह बिंदु है जिस पर घूर्णन तरंग सन्निकटन किया जाता है। द्विध्रुव सन्निकटन मान लिया गया है, और इसके लिए वैध रहने के लिए विद्युत क्षेत्र को परमाणु परिवर्तन के साथ अनुनाद के निकट होना चाहिए। इस का मतलब है कि और जटिल घातीय गुणन और तीव्रता से दोलन माना जा सकता है। इसलिए किसी भी सराहनीय समय के पैमाने पर, दोलन जल्दी से 0. तक औसत हो जाएंगे। घूर्णन तरंग सन्निकटन इस प्रकार दावा है कि इन शब्दों की उपेक्षा की जा सकती है और इस प्रकार हैमिल्टन को अंतःक्रिया चित्र में लिखा जा सकता है

अंत में, श्रोडिंगर तस्वीर में वापस बदलते हुए, हैमिल्टनियन द्वारा दिया गया है

तरंग सन्निकटन को घुमाने के लिए एक अन्य मानदंड कमजोर युग्मन स्थिति है, अर्थात, रबी आवृत्ति परिवर्तन आवृत्ति से बहुत कम होनी चाहिए।[1]

इस बिंदु पर घूर्णन तरंग सन्निकटन पूरा हो गया है। इससे परे एक आम पहला कदम एक अन्य एकात्मक परिवर्तन के माध्यम से हैमिल्टनियन में शेष समय की निर्भरता को दूर करना है।

व्युत्पत्ति

उपरोक्त परिभाषाओं को देखते हुए हैमिल्टनियन पारस्परिक प्रभाव है