छद्म यूक्लिडियन दूरी को दो बिंदुओं पर यूक्लिडियन दूरी के अतिरिक्त हमें हाइपरबोला की ज्यामिति मिलती है, क्योंकि एक छद्म-यूक्लिडियन वृत्त मध्यबिंदु के साथ एक अतिपरवलय है। .
, निर्देशांक के परिवर्तन से छद्म-यूक्लिडियन दूरी को के रूप में पुनः लिखा जा सकता है। अतिपरवलय में गैर-प्राइमेड निर्देशांक, अक्षों के समानांतर स्पर्शोन्मुख होते हैं।
निम्नलिखित समीकरण अतिपरवलय की ज्यामिति को समरूप बनाता है:
'अंक' का समुच्चय:
चक्रों का समुच्चय
घटना संरचना को पारंपरिक वास्तविक मिन्कोव्स्की समष्टि कहा जाता है।
बिंदुओं के समूह , की दो प्रतियाँ और बिंदु में सम्मिलित हैं .
किसी रेखा को बिन्दुवार पूरा किया गया है , किसी अतिपरवलय को दो बिंदुओं से पूरा किया जाता है।
यदि या है तों दो बिंदु को एक चक्र से नहीं युग्मित किया जा सकता है।
हम परिभाषित करते हैं: दो बिंदु , () के (+)-समानांतर है यदि और है। ये दोनों संबंध बिंदुओं के समुच्चय पर तुल्यता संबंध हैं।
दो बिंदु समानांतर कहा जाता है यदि या .
उपरोक्त परिभाषा से हम पाते हैं:
लेम्मा:
गैर समानांतर बिंदुओं के किसी भी युग्म के लिए ठीक एक बिंदु के साथ .समानांतर है।
किसी भी बिंदु और कोई चक्र के लिए साथ . ठीक दो बिंदु हैं।
किन्हीं तीन बिंदुओं , , , के लिए एक युग्मित गैर समानांतर चक्र है, जिसमें सम्मिलित है।
किसी भी चक्र के लिए , किसी बिंदु और के लिए एक चक्र इस प्रकार उपलब्ध है कि ।
पारंपरिक मोबियस और लागुएर समिष्ट की तरह, मिंकोव्स्की समिष्ट भी एक उपयुक्त क्वाड्रेटिक के समसमष्टि खंडों की ज्यामिति के रूप में वर्णित किया जा सकता है।
परंतु इस परिप्रेक्ष्य में, क्वाड्रेटिक परियोजक 3-समष्टि में होती है।: पारंपरिक वास्तविक मिंकोव्स्की समष्टि एक शीट वाले हाइपरबोलाइड के समसमष्टि खंडों की ज्यामिति के समान निर्मित होता है।
मिंकोस्की समष्टि के स्वयंसिद्ध
मान लीजिए की समुच्चय के साथ बिंदुओं की एक घटना संरचना हो तथा समुच्चय चक्रों और दो तुल्यता संबंध ((+) - समानांतर) और ((-)-समानांतर) समुच्चय पर के लिए परिभाषित किया जाता है। के लिए निम्नलिखित संबंध दिया गया है
: और .
एक समतुल्य वर्ग या क्रमशः (+)-जनित्र और (-)-जनित्र कहलाते हैं। दो बिंदु को समानांतर () कहा जाता है यदि या होता है।
एक घटना संरचना निम्नलिखित अभिगृहीतों के अनुसार मिन्कोवस्की समष्टि कहा जाता है:
मिन्कोवस्की-स्वयंसिद्ध-c1-c2
मिन्कोवस्की-स्वयंसिद्ध-c3-c4
* C1: गैर समानांतर बिंदुओं के किसी भी युग्म के लिए एक बिंदु है जहाँ है।
C2: किसी भी बिंदु के लिए और कोई चक्र ठीक दो बिंदु हैं साथ .
C3: किन्हीं तीन बिंदुओं के लिए , युग्मित गैर समानांतर चक्र है जिसमें है .
C4: किसी भी चक्र क े लिए, कोई बिंदु और कोई बिंदु और ठीक एक चक्र उपलब्ध है जहाँ है अर्थात और बिंदु पर अवस्थित है।
C5: किसी भी चक्र में कम से कम 3 बिंदु होते हैं। कम से कम एक चक्र है और एक बिंदु है।
जांच के लिए समानांतर वर्गों (क्रमशः C1, C2 के समान) पर निम्नलिखित कथन उपयोगी हैं।
C1′: किन्हीं दो बिंदुओं के लिए के लिए .
C2': किसी भी बिंदु के लिए और किसी चक्र के लिए: .
स्वयंसिद्धों के पहले परिणाम हैं
Lemma — मिन्कोव्स्की समष्टि के लिए निम्नलिखित कथन सत्य है
कोई भी बिंदु कम से कम एक चक्र में समाहित है.
किसी भी जनित्र में कम से कम 3 बिन्दु होते हैं.
दो बिंदुओं को एक चक्र से जोड़ा जा सकता है यदि और केवल यदि वे समानांतर नहीं हैं।
मोबियस और लैगुएरे समष्टिों के अनुरूप हम रैखिक अवशेषों के माध्यम से ज्यामिति संबंध प्राप्त करते हैं।
मिन्कोव्स्की समष्टि के लिए और स्थानीय संरचना को परिभाषित करते हैं
और इसे बिंदु P पर अवशेष कहते हैं।
पारंपरिक मिन्कोव्स्की समष्टि के लिए असली एफ़िन समष्टि है .
अभिगृहीत C1 से C4 और C1', C2' के तात्कालिक परिणाम निम्नलिखित दो प्रमेय हैं।
Theorem —
मिन्कोव्स्की समष्टि के लिए कोई भी अवशेष एक सजातीय समष्टि है।
Theorem — माना दो तुल्यता संबंधों के साथ एक घटना संरचना है और बिन्दुओ के समुच्चय पर .
तब, किसी बिन्दु के लिए मिन्कोव्स्की समष्टि है तथा अवशेष एक सजातीय समष्टि है।
न्यूनतम मॉडल
मिन्कोव्स्की समष्टि: न्यूनतम मॉडल
Minkowski समष्टि का न्यूनतम मॉडल समुच्चय पर स्थापित किया जा सकता है
तीन तत्वों का:
समानांतर अंक:
यदि और केवल यदि * यदि और केवल यदि .
इस तरह और .
परिमित मिन्कोव्स्की-समष्टि
परिमित मिन्कोव्स्की-समष्टिों के लिए हम C1', C2' से प्राप्त करते हैं:
Lemma — Let be a finite Minkowski plane, i.e. . For any pair of cycles and any pair of generators we have:
.
यह परिभाषा को जन्म देता है:
एक परिमित मिन्कोव्स्की समष्टि के लिए और एक चक्र का हम पूर्णांक कहते हैं के लिए .
सरल संयोजी विचार उपज
Lemma — For a finite Minkowski plane the following is true:
Any residue (affine plane) has order .
,
.
मिक्वेलियन मिन्कोव्स्की समष्टि
पारंपरिक वास्तविक मॉडल का सामान्यीकरण करके हमें मिन्कोव्स्की समष्टिों के सबसे महत्वपूर्ण उदाहरण मिलते हैं: बस प्रतिस्थापित करें एक मनमाना क्षेत्र (गणित) द्वारा तब हम किसी भी स्थिति में मिन्कोव्स्की समष्टि प्राप्त करते हैं .
मोबियस और लैगुएरे समष्टिों के अनुरूप मिकेल की प्रमेय मिंकोव्स्की समष्टि की एक विशिष्ट संपत्ति है .
मिकेल का प्रमेय
प्रमेय (मिकेल): मिंकोव्स्की समष्टि के लिए निम्नलिखित सत्य है:
यदि किन्हीं 8 जोड़ों के लिए समांतर बिंदु नहीं हैं जिसे एक घन के शीर्षों पर नियत किया जा सकता है, जैसे कि 5 चेहरों में बिंदु चक्रीय चतुर्भुज के अनुरूप होते हैं, तो अंक का छठा चौगुना चक्रीय भी होता है।
(आकृति में बेहतर अवलोकन के लिए अतिपरवलय के बजाय वृत्त खींचे गए हैं।)
प्रमेय (चेन): केवल एक मिन्कोव्स्की समष्टि मिकेल के प्रमेय को संतुष्ट करता है।
अंतिम प्रमेय के कारण मिक्वेलियन मिन्कोवस्की समष्टि कहा जाता है।
टिप्पणी: मिंकोव्स्की समष्टि का न्यूनतम मॉडल मिक्वेलियन है।
यह मिंकोवस्की समष्टि के लिए तुल्याकारी है साथ (मैदान ).
आश्चर्यजनक परिणाम है
प्रमेय (हेइज़): सम क्रम का कोई भी मिन्कोवस्की समष्टि मिक्वेलियन होता है।
टिप्पणी: एक उपयुक्त त्रिविम प्रक्षेपण दिखाता है: आइसोमॉर्फिक है
फ़ील्ड के ऊपर प्रोजेक्टिव 3-स्पेस में एक शीट (सूचकांक 2 का द्विघात ) के हाइपरबोलॉइड पर समसमष्टि खंडों की ज्यामिति के लिए .
टिप्पणी: बहुत सारे मिन्कोवस्की समष्टि हैं जो मिक्वेलियन नहीं हैं (नीचे वेबलिंक है)। लेकिन मोबियस और लैगुएरे समष्टिों के विपरीत, कोई अंडाकार मिन्कोव्स्की समष्टि नहीं हैं। क्योंकि प्रोजेक्टिव 3-स्पेस में इंडेक्स 2 का कोई द्विघात समुच्चय क्वाड्रिक है (द्विघात समुच्चय देखें)।