एलपी स्पेस

From Vigyanwiki


गणित में एलपी रिक्त स्थान कार्यक्रम स्थान हैं जो परिमित-आयामी सदिश रिक्त स्थान के लिए पी-मानदंड के प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित किए जाते हैं उन्हें कभी-कभी हेनरी लेबेस्ग्यू डनफोर्ड एंड श्वार्ट्ज 1958 के नाम पर लेबेस्ग्यू स्पेस कहा जाता है जबकि बोरबाकी समूह (बोरबाकी 1987) के अनुसार उन्हें पहली बार फ्रिगेस रिज्जु द्वारा (1910) में पेश किया गया था।
 

एलपी रिक्त स्थान कार्यात्मक विश्लेषण और करणीय सदिश रिक्त स्थान में बनच रिक्त स्थान का एक महत्वपूर्ण वर्ग बनाते हैं माप और संभाव्यता रिक्त स्थान के गणितीय विश्लेषण में उनकी महत्वपूर्ण भूमिका के कारण भौतिकी, सांख्यिकी, अर्थशास्त्र, वित्त, इंजीनियरिंग और अन्य विषयों में समस्याओं की सैद्धांतिक चर्चा में भी लेबेस्गु रिक्त स्थान का उपयोग किया जाता है।

एम्बेडिंग

सामान्य बोलचाल में अगर है तो इसमें ऐसे कई कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व अधिक फैलाया जा सकता है तथा रेखा पर लेबेस्गु माप पर इसमें एक सतत कार्य होता है लेकिन अनंत की ओर तेजी से क्षय नहीं होना चाहिए तथा यह दूसरी ओर निरंतर कार्य करता है को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति भी नहीं है इस तकनीकी के परिणाम निम्नलिखित है [1] जैसे कि तब

  1. अगर परिमित के समूह नहीं होते हैं उदाहरण के लिए कोई परिमित माप।
  2. और गैर-शून्य के समूह में सम्मिलित नहीं हैं लेकिन छोटे होते हैं।

माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए अग्रसर नहीं हैं ये दोनों ही जगहों में व्याख्या करते हैं जिसकी पहचान एक चालक पर सीमित है को की जगहों में और को क्षण में यह बंद ग्राफ प्रमेय और गुणों का परिणाम है तथा रिक्त स्थान और डोमेन परिमित माप है जो इस प्रकार है-

तब
उपरोक्त असमानता में दिखाई देने वाले निरंतर अर्थ में कि पहचान का मानदंड यह है जहाँ
इसमें समानता ठीक उसी समय प्राप्त किया जा रहा है

सघन उपस्थान

इस पूरे खंड में हम यह मानते हैं एक माप स्थान बनें एक पूर्णांक सरल कार्य पर एक रूप है जो इस प्रकार है

जब अदिश राशि है तो यह परिमित उपाय है और समूह का सूचक कार्य है के लिए एकीकरण के निर्माण से समाकलनीय सरल फलनों का सदिश स्थान सघन होता है

अगर बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है खुले समूहों का परिमित माप है फिर स्थान -अभिन्न निरंतर कार्य में सघन है तो यह सीमित निरंतर कार्यों का उपयोग कर सकता है जो खुले समूहों में गायब हो जाते हैं यह विशेष रूप से तब लागू होता है जब और लेबेस्ग उपाय है तथा निरंतर और समर्थित कार्यों का स्थान सघन है जैसे इसी तरह यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब घिरे हुए आयतों का तथा परिबद्ध अंतरालों के उत्पादों के रूप में होता है।

इसमें सामान्य कार्यों के कई गुण पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है

तब


अनुप्रयोग

आंकड़े

आँकड़ों में केंद्रीय प्रवृत्ति और सांख्यिकीय फैलाव के उपाय जैसे कि माध्य , मध्यिका और मानक विचलन के संदर्भ में परिभाषित किए गए हैं गणित और केंद्रीय प्रवृत्ति के उपायों को परिवर्तनशील समस्याओं के समाधान के रूप में चित्रित किया जा सकता है ।

दंडित प्रतिगमन में L1 पेनल्टी और L2 पेनल्टी का अर्थ या तो दंडित करना है किसी समाधान के पैरामीटर मानों के सदिश का मानदण्ड अर्थात् इसके निरपेक्ष मानों का योग या इसके मानदंड तथा इसकी यूक्लिडियन लंबाई तकनीकें जो एलएएसएसओ जैसी L1 पेनल्टी का उपयोग करती हैं व समाधान को भी प्रोत्साहित करती हैं जहां कई पैरामीटर शून्य हैं तकनीकें जो L2 पेनल्टी का उपयोग करती हैं जैसे रिज रिग्रेशन उन समाधानों को प्रोत्साहित करती हैं जहां अधिकांश पैरामीटर मान छोटे होते हैं तथा लोचदार शुद्ध नियमितीकरण एक दंड अवधि का उपयोग करता है जो कि संयोजन है मानदंड और पैरामीटर सदिश का मानदंड है।

हॉसडॉर्फ-यंग असमानता

लिप्यंतरण वास्तविक रेखा के लिए रूपांतरित होता है या आवधिक कार्यों के लिए लिप्यन्तरण नक्शे को क्रमशः यह रिज-थोरिन इंटरपोलेशन प्रमेय का परिणाम कहा जाता है और हौसडॉर्फ-यंग असमानता के साथ बनाया गया है ।

इसके विपरीत लिप्यन्तरण ट्रांसफॉर्म में नक्शा नहीं होता है।


हिल्बर्ट रिक्त स्थान

वर्ग-समाकलनीय समीकरण कार्यक्रम

प्रमात्रा यांत्रिकी से लेकर भारी गणना तक हिल्बर्ट रिक्त कई अनुप्रयोगों के लिए केंद्रीय हैं रिक्त स्थान दोनों हिल्बर्ट रिक्त स्थान हैं वास्तव में हिल्बर्ट आधार चुनकर एक अधिकतम प्रसामान्य उप समूह कोई हिल्बर्ट रिक्त कोई आइसोमेट्रिक रूप से आइसोमोर्फिक का एक हिल्बर्ट स्थान है।

परिमित आयामों में पी - मानदंड

यूनिट सर्किलों के उदाहरण ( सुपरलेलिप्स भी देखें ) मेंभिन्न पर आधारित है-नॉर्म्स (मूल से यूनिट सर्कल तक प्रत्येक वेक्टर की लंबाई एक होती है, लंबाई की गणना इसी के लंबाई-सूत्र के साथ की जाती है).

एक वेक्टर की लंबाईमें-आयामी वास्तविक वेक्टर अंतरिक्ष आमतौर पर यूक्लिडियन मानदंड द्वारा दिया जाता है :

दो बिंदुओं के बीच यूक्लिडियन दूरीऔरलंबाई हैदो बिंदुओं के बीच की सीधी रेखा का। कई स्थितियों में, किसी दिए गए स्थान में वास्तविक दूरी को पकड़ने के लिए यूक्लिडियन दूरी अपर्याप्त है। एक ग्रिड स्ट्रीट योजना में टैक्सी चालकों द्वारा इसका एक सादृश्य सुझाया गया है, जिन्हें दूरी को अपने गंतव्य तक सीधी रेखा की लंबाई के संदर्भ में नहीं, बल्कि सीधी रेखा की दूरी के संदर्भ में मापना चाहिए, जो इस बात को ध्यान में रखता है कि सड़कें या तो ऑर्थोगोनल हैं या एक दूसरे के समानांतर। का वर्ग-मानदंड इन दो उदाहरणों का सामान्यीकरण करते हैं और गणित , भौतिकी , और कंप्यूटर विज्ञान के कई हिस्सों में अनुप्रयोगों की बहुतायत है ।


एस्ट्रॉइड , यूनिट सर्कल इनमीट्रिक

मेंके लिएसूत्र

के लिए एक बिल्कुल सजातीय कार्य को परिभाषित करता हैहालाँकि, परिणामी फ़ंक्शन एक मानदंड को परिभाषित नहीं करता है, क्योंकि यह उप-योगात्मक नहीं है । दूसरी ओर सूत्र है

पूर्ण एकरूपता खोने की कीमत पर उप-योगात्मक कार्य को परिभाषित करता है। यह एक एफ-मानदंड को परिभाषित करता है , हालांकि, जो डिग्री का सजातीय है

इसलिए, समारोह

एक मीट्रिक परिभाषित करता है । मीट्रिक स्थान द्वारा निरूपित किया जाता है

हालांकि-यूनिट बॉलइस मीट्रिक में मूल के आसपास "अवतल" है, जिसे टोपोलॉजी परिभाषित किया गया हैमीट्रिक द्वाराकी सामान्य वेक्टर स्पेस टोपोलॉजी हैइस तरहस्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस है । इस गुणात्मक कथन से परे, उत्तलता की कमी को मापने का एक मात्रात्मक तरीकाद्वारा निरूपित करना हैसबसे छोटा स्थिरांकजैसे कि अदिश गुणककी-यूनिट बॉल में उत्तल हल होता हैजो बराबर हैतथ्य यह है कि निश्चित के लिएअपने पास

दिखाता है कि अनंत-आयामी अनुक्रम स्थाननीचे परिभाषित, अब स्थानीय रूप से उत्तल नहीं है। [ उद्धरण वांछित ]

जब पी = 0 संपादन करना

वहां एक हैमानदंड और एक अन्य कार्य जिसे कहा जाता है"आदर्श" (उद्धरण चिह्नों के साथ)।

गणितीय परिभाषामानदंड बनच के रैखिक संचालन के सिद्धांत द्वारा स्थापित किया गया था । अनुक्रमों के स्थान में एफ-मानदंड द्वारा प्रदान की गई एक पूर्ण मीट्रिक टोपोलॉजी है जिस पर मैट्रिक लीनियर स्पेस में स्टीफन रोलविक्ज़ द्वारा चर्चा की गई है ।  द-सामान्य स्थान का कार्यात्मक विश्लेषण, संभाव्यता सिद्धांत और हार्मोनिक विश्लेषण में अध्ययन किया जाता है। एक और समारोह कहा जाता थाडेविड डोनोहो द्वारा "मानक" - जिसका उद्धरण चिह्न चेतावनी देता है कि यह फ़ंक्शन एक उचित मानदंड नहीं है - वेक्टर की गैर-शून्य प्रविष्टियों की संख्या है[ उद्धरण वांछित ] कई लेखक उद्धरण चिह्नों को छोड़ कर शब्दावली का दुरुपयोग करते हैं । परिभाषितका शून्य "आदर्श"के बराबर है

0.05 के चरण के साथ 0.1 से 2 तक के पी-मानदंडों का एक एनिमेटेड जिफ़।

यह एक आदर्श नहीं है क्योंकि यह सजातीय नहीं है । उदाहरण के लिए, वेक्टर स्केलिंग

एक सकारात्मक स्थिरांक से "मानक" नहीं बदलता है। गणितीय मानदंड के रूप में इन दोषों के बावजूद, गैर-शून्य गणना "मानक" का वैज्ञानिक कंप्यूटिंग , सूचना सिद्धांत और सांख्यिकी में उपयोग होता है - विशेष रूप से सिग्नल प्रोसेसिंग और कम्प्यूटेशनल हार्मोनिक विश्लेषण में संपीड़ित संवेदन में । मानदंड न होने के बावजूद, संबद्ध मीट्रिक, जिसे हैमिंग दूरी के रूप में जाना जाता है , एक मान्य दूरी है, क्योंकि दूरियों के लिए एकरूपता की आवश्यकता नहीं होती है।


जहां दाईं ओर अभिसरण का अर्थ है कि केवल गिने-चुने योग शून्य नहीं हैं ( बिना शर्त अभिसरण भी देखें )। आदर्श के साथ

अंतरिक्षबनच स्थान बन जाता है। मामले में जहांके साथ परिमित हैतत्व, यह निर्माण उपज देता हैसाथ-मानदंड ऊपर परिभाषित। अगरगणनीय रूप से अनंत है, यह बिल्कुल अनुक्रम स्थान हैऊपर परिभाषित। बेशुमार सेट के लिएयह एक गैर- वियोज्य बनच स्थान है जिसे स्थानीय रूप से उत्तल प्रत्यक्ष सीमा के रूप में देखा जा सकता है-अनुक्रम रिक्त स्थान।

के लिए the -मानदंड भी एक विहित आंतरिक उत्पाद से प्रेरित है इसको कॉल किया गयायूक्लिडियन आंतरिक उत्पाद , जिसका अर्थ है किसभी वैक्टर के लिए धारण करता हैयह आंतरिक उत्पाद ध्रुवीकरण पहचान का उपयोग करके आदर्श के रूप में व्यक्त किया जा सकता है । परद्वारा परिभाषित किया जा सकता है

जबकि अंतरिक्ष के लिएएक माप स्थान के साथ जुड़ा हुआ है जिसमें सभी स्क्वायर-इंटीग्रेबल फ़ंक्शन शामिल हैं , यह है


अब मामले पर विचार करेंपरिभाषित करें

बंद उप-स्थान

अगर मापने योग्य स्थान पर एक संभाव्यता माप है तो यह कोई सकारात्मक वास्तविक संख्या है और एक सदिश उप समष्टि है तब बंद उप समष्टि है अगर परिमित-आयामी है[2] तो इस प्रमेय में जो अलेक्जेंडर ग्रोथेंडिक के कारण हैं [2] यह महत्वपूर्ण है जैसे सदिश स्थान का उपसमुच्चय हो तो अनंत-विमीय बंद सदिश उप समष्टि का निर्माण संभव है कहाँ इकाई वृत्त की माप है और संभाव्यता माप है जो इसे इसके द्रव्यमान से विभाजित करने का परिणाम है जैसे [2]

Lp (0 < p < 1)

वेक्टर के पास उत्तल पड़ोस की मूलभूत प्रणाली नहीं हैविशेष रूप से, यह सच है यदि माप स्थान

S में परिमित धनात्मक माप के असंयुक्त मापने योग्य समूहों का एक अनंत परिवार होता है।

केवल गैर-खाली उत्तल खुला समूह स्थान है (रुडिन 1991) एक विशेष परिणाम के रूप में कोई गैर-शून्य निरंतर रैखिक कार्य नहीं हैं सतत दोहरा स्थान शून्य स्थान है प्राकृतिक संख्याओं पर गिनती माप के स्थान में अनुक्रम स्थान का निर्माण इस प्रकार है
   
इसमें परिबद्ध रेखीय फलन
ℓ
  
अर्थात् वे जो क्रम में दिए गए हैं
ℓ
∞
. जबकि
ℓ में गैर-तुच्छ उत्तल खुले समूह होते हैं यह टोपोलॉजी के लिए आधार देने के लिए उनमें से पर्याप्त होने में विफल रहता है जैसे

सामान्यीकरण और विस्तार

समान्यीकरण

समान्यीकरण एक माप स्थान है और वास्तविक या जटिल मूल्यों के साथ एक औसत दर्जे का कार्य का संचयी वितरण समारोह के लिए परिभाषित किया गया है जैसे द्वारा इसे दर्शाया गया है जहाँ

भारित Lp रिक्त स्थान

पहले की तरह माप स्थान है तथा एक मापने योग्य कार्य हो वें भारित अंतरिक्ष के रूप में परिभाषित किया गया है जो पैमाना

द्वारा परिभाषित

Lp कई गुना पर रिक्त स्थान

Lp कई रिक्त स्थान परिभाषित कर सकता है पर कई गुना आंतरिक माना जाता है पर घनत्व का उपयोग करते हुए रिक्त स्थान निम्न हैं।

सदिश-मूल्यवान Lp रिक्त स्थान

एक माप स्थान दिया गया और स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान इसके रिक्त स्थान को परिभाषित करता है यहाँ -पूर्ण करने योग्य -मूल्यवान कार्यों पर कई तरह से परिभाषित किया गया है जो इस प्रकार है तथा यह टेन्सर उत्पाद द्वारा निरूपित किया गया है।

यह भी देखें

  • गणितीय अवध। ारणा
  • सांस्थितिक रिक्त।
  • हार्डी रिक्त  - जटिल विश्लेषण के भीतर अवधारणा।
  • रीज़्ज़-थोरिन प्रमेय  - ऑपरेटर प्रक्षेप पर प्रमेय।
  • होल्डर माध्य  - दी गई संख्याओं के अंकगणितीय माध्य का N-वाँ मूल घात n तक बढ़ाया जाता है।
  • होल्डर स्थान - एक जटिल-मूल्यवान कार्यक्रम की निरंतरता का प्रकार।
  • मूल माध्य वर्ग  - माध्य वर्ग का वर्गमूल।
  • कम से कम निरपेक्ष विचलन  - सांख्यिकीय इष्टतमता मानदंड।
  • स्थानीय रूप से अभिन्न कार्य ।
  • कम से कम वर्ग वर्णक्रमीय विश्लेषण  - आवधिकता संगणना विधि।
  • बनच स्थानों की सूची।
  • मिन्कोस्की दूरी  - सदिशों या बिन्दुओं के बीच की दूरी को निर्देशांक अंतरों की घातों के योग के मूल के रूप में परिकलित किया जाता है।
  • एल पी राशि।

टिप्पणियाँ

  1. Villani, Alfonso (1985), "Another note on the inclusion Lp(μ) ⊂ Lq(μ)", Amer. Math. Monthly, 92 (7): 485–487, doi:10.2307/2322503, JSTOR 2322503, MR 0801221
  2. 2.0 2.1 2.2 Rudin 1991, pp. 117–119.


संदर्भ


बाहरी संबंध