शुबर्ट कैलकुलस
गणित में, शुबर्ट गणना (कैलकुलस) बीजगणितीय ज्यामिति की एक शाखा है, जिसे उन्नीसवीं शताब्दी में हर्मन शूबर्ट द्वारा प्रस्तुत किया गया था, ताकि प्रक्षेपी ज्यामिति (गणना ज्यामिति का भाग) की विभिन्न गणना की समस्याओं को संशोधन किया जा सके। यह कई और आधुनिक सिद्धांतों का प्रणेता था, उदाहरण के लिए विशेषता वर्ग, और विशेष रूप से इसके एल्गोरिथम स्वरूप अभी भी वर्तमान रुचि के हैं। वाक्यांश "शुबर्ट गणना" का उपयोग कभी-कभी रैखिक उप-समष्टि की गणनात्मक ज्यामिति के अर्थ के लिए किया जाता है, जो सामान्य रूप से ग्रासमैनियन की कोहोलॉजी वलय का वर्णन करने के बराबर होता है, और कभी-कभी गैर-रैखिक किस्मों के अधिक सामान्य गणनात्मक ज्यामिति का अर्थ होता है। इससे भी अधिक सामान्य रूप से, "श्यूबर्ट गणना" को प्रायः सामान्यीकृत कोहोलॉजी सिद्धांतों में समान प्रश्नों के अध्ययन को सम्मिलित करने के लिए समझा जाता है।
शुबर्ट द्वारा प्रस्तुत की गई वस्तुएँ शुबर्ट कोशिकाएँ हैं, जो किसी दिए गए चिन्ह (रैखिक बीजगणित) के साथ प्रक्षेपीय समष्टि में एक रेखीय उप-समष्टि की विस्तार (ज्यामिति) की स्थितियों द्वारा परिभाषित ग्रासमैनियन में स्थानीय रूप से संवृत समुच्चय हैं। अधिक जानकारी के लिए शुबर्ट किस्म देखें।
इन कोशिकाओं का प्रतिच्छेदन सिद्धांत, जिसे संबंधित कोहोलॉजी वर्गो के ग्रासमैनियन के कोहोलॉजी वलय में गुणनफल संरचना के रूप में देखा जा सकता है, सिद्धांत रूप में उन स्थितियों की भविष्यवाणी की स्वीकृति देता है जहां कोशिकाओं के प्रतिच्छेदन के परिणामस्वरूप बिंदुओं का एक परिमित समुच्चय होता है, जो गणनात्मक प्रश्नों के संभावित मूर्त उत्तर होते हैं। एक सहायक सैद्धांतिक परिणाम यह है कि शुबर्ट कोशिकाएं (या बल्कि, उनकी कक्षाएं) पूरे कोहोलॉजी वलय का विस्तार करती हैं।
जैसे ही कोशिकाओं को अनुक्रमित किया जाना है, विस्तृत गणनाओं में संयोजी स्वरूपों को दर्ज किया जाता है। ग्रासमानियन से उत्थापन मे, जो एक सजातीय समष्टि है, उस पर कार्य करने वाले सामान्य रैखिक समूह के लिए, इसी तरह के प्रश्न ब्रुहाट विघटन और परवलयिक उपसमूहो (ब्लॉक आव्यूह द्वारा) के वर्गीकरण में सम्मिलित हैं।
हिल्बर्ट की पन्द्रहवीं समस्या शुबर्ट की प्रणाली को एक दृढ़ आधार पर स्थापित करना है।
निर्माण
शूबर्ट गणना का निर्माण ग्रासमानियन के चाउ वलय का उपयोग करके किया जा सकता है जहां ज्यामितीय रूप से सार्थक डेटा द्वारा उत्पन्न चक्रों का प्रतिनिधित्व किया जाता है।[1] को निश्चित -आयामी सदिश समष्टि मे k-तलों के ग्रासमानियन के रूप में निरूपित करें, और इसकी चाउ वलय पर ध्यान दें कि कभी-कभी ग्रासमानियन को इस रूप में दर्शाया जाता है। यदि सदिश समष्टि स्पष्ट रूप से नहीं दिया गया है। यादृच्छिक रूप से पूर्ण ध्वज से संबद्ध
और एक घटता हुआ -पूर्णांकों का समूह जहां
च्यूबर्ट चक्र (जिन्हें चाउ वलय के अतिरिक्त कोशिकीय समरूपता पर विचार करते समय शुबर्ट कोशिका कहा जाता है) हैं जिसे के रूप में परिभाषित किया गया है
चूंकि वर्ग पूर्ण चिन्ह पर निर्भर नहीं करता है, जिसे वर्ग के रूप में लिखा जा सकता है
जिन्हें शूबर्ट वर्ग कहा जाता है। यह दिखाया जा सकता है कि ये वर्ग चाउ वलय उत्पन्न करते हैं, और संबद्ध प्रतिच्छेदन सिद्धांत को शूबर्ट गणना कहा जाता है। दिए गए अनुक्रम पर ध्यान दें शुबर्ट वर्ग सामान्य रूप से सिर्फ के रूप में दर्शाया जाता है। साथ ही, एक पूर्णांक द्वारा दिए गए शूबर्ट वर्ग को विशेष वर्ग कहा जाता है। नीचे गिआम्बेली सूत्र का उपयोग करके इन विशेष वर्गों से सभी शुबर्ट वर्ग उत्पन्न किए जा सकते हैं।
स्पष्टीकरण
परिभाषा की व्याख्या करने के लिए, एक सामान्य -तल पर विचार करें: इसमें के लिए के साथ केवल एक शून्य प्रतिच्छेदन होगा, जबकि के लिए का प्रतिच्छेदन होगा। उदाहरण के लिए, में -तल पांच स्वतंत्र सजातीय रैखिक समीकरणों की प्रणाली का समाधान समष्टि है। उप-समष्टि तक सीमित ये समीकरण सामान्य रूप से विस्तारित होंगे, जिस स्थिति में समाधान समष्टि ( का प्रतिच्छेदन ) में केवल शून्य सदिश सम्मिलित होगा। हालाँकि, एक बार , तब और आवश्यक रूप से अशून्य प्रतिच्छेदन होगा। उदाहरण के लिए और के प्रतिच्छेदन का अपेक्षित आयाम है, तब और के प्रतिच्छेदन का अपेक्षित आयाम है और इसी तरह आगे भी होगा।
शुबर्ट चक्र की परिभाषा बताती है कि के साथ j का पहला मान सामान्य रूप से अपेक्षित मान से छोटा पैरामीटर है। -तल इन बाधाओं द्वारा दिए गए तब की विशेष उप-किस्मों को परिभाषित करते हैं।[1]
गुण
समावेशन
सभी -टपल पर एक आंशिक क्रम है जहाँ यदि प्रत्येक के लिए है। यह शुबर्ट चक्रों को सम्मिलित करता है
सूचकांकों में वृद्धि दिखाना उप-किस्मों के और भी अधिक विशेषज्ञता के अनुरूप है।
सह-आयाम सूत्र
शूबर्ट चक्र का सह-आयाम है
जो ग्रासमानियन के समावेशन के अंतर्गत स्थिर है। अर्थात समावेशन
प्रत्येक -तल में अतिरिक्त आधार तत्व जोड़कर दिया जाता है, एक -तल देते हुए, गुण है
इसके अतिरिक्त, समावेशन
-तल को सम्मिलित करने से दिया गया समान पुलबैक गुण है।
प्रतिच्छेदन गुणनफल
प्रतिच्छेदन गुणनफल को सबसे पहले पियरी और गियाम्बेली सूत्रों का उपयोग करके स्थापित किया गया था।
पियरी सूत्र
विशेष स्थिति में के गुणनफल का एक स्पष्ट सूत्र है, यादृच्छिक शुबर्ट वर्ग के द्वारा दिया गया
पर ध्यान दें, इस सूत्र को पियरी सूत्र कहा जाता है और गिआम्बेली सूत्र के साथ संयुक्त होने पर किसी भी दो शूबर्ट वर्गों के प्रतिच्छेदन गुणनफल को निर्धारित करने के लिए उपयोग किया जा सकता है। उदाहरण के लिए
और
गिआम्बेली सूत्र
दो या दो से अधिक लंबाई वाले टुपल्स वाले शुबर्ट वर्गों को केवल एक टपल के वर्गों का उपयोग करके एक निर्धारक समीकरण के रूप में वर्णित किया जा सकता है। गियाम्बेली सूत्र समीकरण के रूप में पढ़ता है
-आव्यूह के निर्धारक द्वारा दिया जाता है। उदाहरण के लिए,
और
चेर्न वर्गों के साथ संबंध
ग्रासमेनियन पर दो प्राकृतिक वेक्टर बंडलों के चेर्न वर्गों का उपयोग करते हुए ग्रासमैनियन के कोहोलॉजी वलय, या चाउ वलय का एक आसान विवरण है। वेक्टर बंडलों का एक क्रम है
जहाँ पद का तुच्छ सदिश बंडल पर का सूत्र उपसमष्टि है, और भागफल सदिश बंडल है जो प्रत्येक सूत्रों पर पद स्थिर होने के बाद से सम्मिलित है। इन दो संबद्ध बंडलों के चेर्न वर्ग हैं
जहाँ एक -टुपल और
पुनरुक्तात्मक अनुक्रम तब चाउ वलय की प्रस्तुति के रूप में देता है
G(2,4)
विश्लेषण किए गए उत्कृष्ट उदाहरणों में से एक ग्रासमैनियन है क्योंकि यह में रेखाओ को पैरामीटर करता है। घनीय सतह पर रेखाओं की संख्या ज्ञात करने के लिए शूबर्ट गणना का उपयोग किया जा सकता है।
चाउ वलय
चाउ वलय में प्रस्तुति है
और एक श्रेणीबद्ध एबेलियन समूह के रूप में में यह दिया जाता है
घन सतह पर रेखाएं
इस चाउ वलय का उपयोग घनीय सतह पर रेखाओ की संख्या की गणना करने के लिए किया जा सकता है।[1] और मे एक रेखा का खंडन करे जो की दो उपसमष्टि को एक आयाम देती है, इस तरह, एक रेखा के समीकरण को एक खंड के रूप में दिया जा सकता है। एक घन सतह के बाद से एक सामान्य सजातीय घन बहुपद के रूप में दिया जाता है, यह एक सामान्य खंड के रूप में दिया जाता है फिर, एक रेखा की एक उप-प्रजाति है यदि और केवल यदि खंड नष्ट हो जाता है इसलिए, का यूलर वर्ग पर एकीकृत किया जा सकता है। उन बिंदुओं की संख्या प्राप्त करने के लिए जहां सामान्य खंड नष्ट हो जाता है यूलर वर्ग प्राप्त करने के लिए, चेर्न का कुल वर्ग गणना की जानी चाहिए, जिसे के रूप में दिया गया है।
तब, विभाजन सूत्र को औपचारिक समीकरण के रूप में पढ़ा जाता है
जहाँ और औपचारिक रेखा बंडलों के लिए है। बंटन का समीकरण संबंध और से प्राप्त होता है। चूंकि औपचारिक सदिश बंडलों के प्रत्यक्ष योग के रूप में पढ़ा जा सकता है
जिसकी कुल चेर्न वर्ग है
इसलिए
तथ्य का उपयोग
और
फिर, समाकलन है
चूंकि शीर्ष वर्ग है। इसलिए एक घन सतह पर रेखाएँ हैं।
यह भी देखें
- संख्यात्मक ज्यामिति
- चाउ वलय
- प्रतिच्छेदन सिद्धांत
- ग्रासमैनियन
- गियाम्बेली का सूत्र
- पियरी का सूत्र
- चेर्न वर्ग
- वृत्त तिगुना
- दर्पण समरूपता अनुमान
संदर्भ
- ↑ 1.0 1.1 1.2 3264 and All That (PDF). pp. 132, section 4.1, 200, section 6.2.1.
- ↑ Katz, Sheldon. गणनात्मक ज्यामिति और स्ट्रिंग थ्योरी. p. 96.
- Summer school notes http://homepages.math.uic.edu/~coskun/poland.html
- Phillip Griffiths and Joseph Harris (1978), Principles of Algebraic Geometry, Chapter 1.5
- Kleiman, Steven (1976). "Rigorous foundations of Schubert's enumerative calculus". In Felix E. Browder (ed.). Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics. Vol. XXVIII.2. American Mathematical Society. pp. 445–482. ISBN 0-8218-1428-1.
- Steven Kleiman and Dan Laksov (1972). "Schubert calculus" (PDF). American Mathematical Monthly. 79: 1061–1082. doi:10.2307/2317421.
- Sottile, Frank (2001) [1994], "शुबर्ट कैलकुलस", Encyclopedia of Mathematics, EMS Press
- David Eisenbud and Joseph Harris (2016), "3264 and All That: A Second Course in Algebraic Geometry".