पैकिंग आयाम

From Vigyanwiki
Revision as of 23:39, 27 May 2023 by alpha>Samikshas (अनुक्रम नियत करें)

गणित में, पैकिंग आयाम कई अवधारणाओं में से एक है जिसका उपयोग मीट्रिक स्थान के उपसमूहों के आयाम को परिभाषित करने के लिए किया जा सकता है। पैकिंग आयाम कुछ अर्थों में हॉसडॉर्फ आयाम के लिए द्वैत (गणित) है, क्योंकि पैकिंग आयाम दिए गए उपसमूहों के अंदर छोटी खुली गेंदों द्वारा दिए गए उपसमूहों को कवर करके किया जाता है। पैकिंग आयाम को 1982 में सी ट्रिकॉट जूनियर द्वारा पेश किया गया था।

परिभाषाएँ

मान लीजिए (X, d) एक उपसमुच्चय S ⊆ X के साथ एक मीट्रिक स्थान है और s ≥ 0 एक वास्तविक संख्या है। S के 'आयामी पैकिंग पूर्व-माप' को परिभाषित किया गया है

दुर्भाग्य से, यह केवल एक पूर्व-मापन है और X के उपसमूहों पर सही माप (गणित) नहीं है, जैसा कि घने सेट, गणनीय सेट उपसमूहों पर विचार करके देखा जा सकता है। हालाँकि, पूर्व-उपाय एक वास्तविक माप की ओर ले जाता है: S' का s'-आयामी पैकिंग माप 'के रूप में परिभाषित किया गया है

यानी, S का पैकिंग माप, S के गणनीय कवरों के पैकिंग पूर्व-उपायों से कम है।

ऐसा करने के बाद, 'पैकिंग आयाम'P मंद हो जाता है S के (S) हॉसडॉर्फ आयाम के अनुरूप परिभाषित किया गया है:


एक उदाहरण

निम्नलिखित उदाहरण सबसे सरल स्थिति है जहां हॉसडॉर्फ और पैकिंग आयाम भिन्न हो सकते हैं।

अनुक्रम नियत करें ऐसा है कि और . आगमनात्मक रूप से नेस्टेड अनुक्रम को परिभाषित करें वास्तविक रेखा के सघन उपसमुच्चयों की संख्या इस प्रकार है: मान लीजिए . के प्रत्येक जुड़े घटक के लिए (जो निश्चित रूप से लंबाई का अंतराल होगा ), लंबाई के मध्य अंतराल को हटा दें , लंबाई के दो अंतराल प्राप्त करना , जिसे जुड़े घटकों के रूप में लिया जाएगा . अगला, परिभाषित करें . तब स्थैतिक रूप से एक कैंटर सेट है (यानी, एक कॉम्पैक्ट पूरी तरह से डिस्कनेक्ट किया गया सही स्थान)। उदाहरण के लिए, सामान्य मध्य-तिहाई कैंटर सेट होगा यदि .

यह दिखाना संभव है कि हौसडॉर्फ और सेट के पैकिंग आयाम क्रमशः दिए गए हैं:

यह दिए गए नंबरों का आसानी से अनुसरण करता है , कोई एक क्रम चुन सकता है ऊपर जैसा कि संबद्ध (स्थलीय) कैंटर सेट है हॉसडॉर्फ आयाम है और पैकिंग आयाम .

सामान्यीकरण

व्यास की तुलना में s के लिए आयाम कार्यों को अधिक सामान्य माना जा सकता है: किसी भी कार्य h : [0, +∞) → [0, +∞] के लिए, 'आयाम फ़ंक्शन के साथ' S का 'पैकिंग पूर्व-माप' h दिया जाए द्वारा

और डायमेंशन फंक्शन h के साथ S के पैकिंग माप को परिभाषित करें

फलन h को S के लिए एक 'सटीक' ('पैकिंग') 'आयाम फलन' कहा जाता है यदि Ph(S) परिमित और पूर्ण रूप से धनात्मक दोनों है।

गुण

  • यदि S, n-विम यूक्लिडियन अंतरिक्ष 'R' का उपसमुच्चय हैn अपने सामान्य मीट्रिक के साथ, तो S का पैकिंग आयाम S के ऊपरी संशोधित बॉक्स आयाम के बराबर है:
    यह परिणाम दिलचस्प है क्योंकि यह दिखाता है कि माप (पैकिंग आयाम) से प्राप्त आयाम माप (संशोधित बॉक्स आयाम) का उपयोग किए बिना व्युत्पन्न के साथ कैसे सहमत होता है।

हालाँकि, ध्यान दें कि पैकिंग आयाम बॉक्स आयाम के बराबर नहीं है। उदाहरण के लिए, परिमेय संख्या 'Q' के सेट का बॉक्स आयाम एक और पैकिंग आयाम शून्य है।

यह भी देखें

  • हॉसडॉर्फ आयाम
  • मिन्कोव्स्की-बोलीगैंड आयाम

संदर्भ

  • Tricot, Claude Jr. (1982). "Two definitions of fractional dimension". Mathematical Proceedings of the Cambridge Philosophical Society. 91 (1): 57–74. doi:10.1017/S0305004100059119. S2CID 122740665. MR633256