आरएनजी (बीजगणित)

From Vigyanwiki
Revision as of 14:49, 23 May 2023 by alpha>Indicwiki (Created page with "{{short description|Algebraic ring without a multiplicative identity}} {{Algebraic structures |Ring}} गणित में, और अधिक विशेष रूप स...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, और अधिक विशेष रूप से सार बीजगणित में, एक आरएनजी (या गैर-इकाई अंगूठी या छद्म अंगूठी) एक बीजगणितीय संरचना है जो एक अंगूठी (गणित) के समान गुणों को संतुष्ट करती है, लेकिन एक गुणक पहचान के अस्तित्व को ग्रहण किए बिना। आरएनजी शब्द (आईपीए: /rʊŋ/) का मतलब यह सुझाव देना है कि यह i के बिना एक अंगूठी है, यानी पहचान तत्व की आवश्यकता के बिना।[1]: 155–156 

समुदाय में इस बात पर कोई आम सहमति नहीं है कि गुणक पहचान का अस्तित्व रिंग स्वयंसिद्धों में से एक होना चाहिए (देखें Ring (mathematics) § History). शब्द rng इस अस्पष्टता को कम करने के लिए गढ़ा गया था जब लोग गुणक पहचान के स्वयंसिद्ध के बिना एक अंगूठी को स्पष्ट रूप से संदर्भित करना चाहते हैं।

गणितीय विश्लेषण में विचार किए जाने वाले कार्यों के बीजगणित एकात्मक नहीं हैं, उदाहरण के लिए अनंत पर शून्य से कम होने वाले कार्यों का बीजगणित, विशेष रूप से कुछ (गैर-कॉम्पैक्ट जगह ) स्थान पर कॉम्पैक्ट समर्थन वाले।

परिभाषा

औपचारिक रूप से, एक आरएनजी दो द्विआधारी संचालन के साथ एक सेट (गणित) आर है (+, ·) को जोड़ और गुणा कहते हैं

  • (आर, +) एक एबेलियन समूह है,
  • (आर, ·) एक अर्धसमूह है,
  • योग पर गुणन वितरण नियम।

एक 'rng समाकारिता' एक फलन है f: RS एक आरएनजी से दूसरे में ऐसा कि

  • एफ (एक्स + वाई) = एफ (एक्स) + एफ (वाई)
  • एफ (एक्स · वाई) = एफ (एक्स) · एफ (वाई)

आर में सभी एक्स और वाई के लिए।

यदि R और S वलय हैं, तो एक वलय समाकारिता है RS एक rng समरूपता के समान है RS जो 1 से 1 को मैप करता है।

उदाहरण

सभी रिंग रिंग हैं. एक रिंग का एक सरल उदाहरण जो कि रिंग नहीं है, पूर्णांकों के साधारण जोड़ और गुणन के साथ सम संख्या द्वारा दिया जाता है। एक अन्य उदाहरण सभी 3-बाय-3 वास्तविक मैट्रिक्स (गणित) के सेट द्वारा दिया गया है जिसकी निचली पंक्ति शून्य है। ये दोनों उदाहरण सामान्य तथ्य के उदाहरण हैं कि प्रत्येक (एक या दो तरफा) आदर्श (रिंग थ्योरी) एक रिंग है।

रंग अक्सर कार्यात्मक विश्लेषण में स्वाभाविक रूप से प्रकट होते हैं जब अनंत-आयाम (रैखिक बीजगणित) वेक्टर रिक्त स्थान पर रैखिक ऑपरेटरों पर विचार किया जाता है। उदाहरण के लिए किसी अनंत-आयामी सदिश समष्टि V को लें और सभी रैखिक संकारकों के समुच्चय पर विचार करें f : VV परिमित रैंक (रैखिक बीजगणित) के साथ (यानी dim f(V) < ∞). ऑपरेटरों के जोड़ और कार्यात्मक संरचना के साथ, यह एक आरएनजी है, लेकिन रिंग नहीं है। एक अन्य उदाहरण सभी वास्तविक अनुक्रमों का आरएनजी है जो घटक-वार संचालन के साथ अनुक्रम 0 की सीमा है।

साथ ही, वितरण के सिद्धांत में होने वाले कई परीक्षण समारोह रिक्त स्थान में फ़ंक्शन होते हैं अनंत पर शून्य से घटते हुए, जैसे उदा। श्वार्ट्ज अंतरिक्ष। इस प्रकार, फ़ंक्शन हर जगह एक के बराबर है, जो बिंदुवार गुणन के लिए एकमात्र संभावित पहचान तत्व होगा, ऐसी जगहों में मौजूद नहीं हो सकता है, जो इसलिए rngs (बिंदुवार जोड़ और गुणा के लिए) हैं। विशेष रूप से, कुछ टोपोलॉजिकल स्पेस पर परिभाषित कॉम्पैक्ट स्पेस सपोर्ट (गणित) के साथ वास्तविक-मूल्यवान निरंतर कार्य, बिंदुवार जोड़ और गुणा के साथ, एक आरएनजी बनाते हैं; यह एक रिंग नहीं है जब तक कि अंतर्निहित स्थान कॉम्पैक्ट स्पेस न हो।

उदाहरण: सम पूर्णांक

सम पूर्णांकों का समुच्चय 2Z जोड़ और गुणन के तहत बंद है और इसकी एक योगात्मक पहचान है, 0, इसलिए यह एक rng है, लेकिन इसकी गुणक पहचान नहीं है, इसलिए यह वलय नहीं है।

2Z में, केवल गुणक Idempotence 0 है, केवल nilpotent 0 है, और सामान्यीकृत व्युत्क्रम वाला एकमात्र तत्व 0 है।

उदाहरण: परिमित पंचांग अनुक्रम

प्रत्यक्ष योग समन्वय-वार जोड़ और गुणन से सुसज्जित निम्नलिखित गुणों वाला एक आरएनजी है:

  • इसके उदासीन तत्व बिना किसी ऊपरी सीमा के एक जाली बनाते हैं।
  • प्रत्येक तत्व x का एक सामान्यीकृत व्युत्क्रम होता है, अर्थात् एक तत्व y ऐसा होता है xyx = x और yxy = y.
  • के हर परिमित उपसमुच्चय के लिए , में एक बेवकूफ मौजूद है जो पूरे उपसमुच्चय के लिए एक पहचान के रूप में कार्य करता है: हर स्थिति में एक के साथ अनुक्रम जहां उपसमुच्चय में एक अनुक्रम में उस स्थिति में एक गैर-शून्य तत्व होता है, और हर दूसरी स्थिति में शून्य होता है।

गुण

  • Ideals, quotient rings, and modules can be defined for rngs in the same manner as for rings.
  • Working with rngs instead of rings complicates some related definitions, however. For example, in a ring R, the left ideal (f) generated by an element f, defined as the smallest left ideal containing f, is simply Rf, but if R is only a rng, then Rf might not contain f, so instead

    where nf must be interpreted using repeated addition/subtraction since n need not represent an element of R. Similarly, the left ideal generated by elements f1, ..., fm of a rng R is

    a formula that goes back to Emmy Noether.[2] Similar complications arise in the definition of submodule generated by a set of elements of a module.
  • Some theorems for rings are false for rngs. For example, in a ring, every proper ideal is contained in a maximal ideal, so a nonzero ring always has at least one maximal ideal. Both these statements fail for rngs.
  • A rng homomorphism f : RS maps any idempotent element to an idempotent element.
  • If f : RS is a rng homomorphism from a ring to a rng, and the image of f contains a non-zero-divisor of S, then S is a ring, and f is a ring homomorphism.

एक पहचान तत्व (दोरोह विस्तार) के साथ

प्रत्येक रिंग R को एक पहचान तत्व से जोड़कर एक रिंग R^ तक बढ़ाया जा सकता है। ऐसा करने का एक सामान्य तरीका यह है कि औपचारिक रूप से एक पहचान तत्व 1 को जोड़ा जाए और R^ में 1 के अभिन्न रैखिक संयोजनों और R के तत्वों को इस आधार के साथ शामिल किया जाए कि इसके गैर-अभिन्न अभिन्न गुणकों में से कोई भी संयोग नहीं करता है या R में समाहित नहीं है। , R^ के अवयव रूप के हैं

एन · 1 + आर

जहाँ n एक पूर्णांक है और rR. गुणन को रैखिकता द्वारा परिभाषित किया गया है:

(एन1 + आर1) · (एन2 + आर2) = एन1n2 + एन1r2 + एन2r1 + आर1r2.

अधिक औपचारिक रूप से, हम R^ को कार्तीय गुणनफल के रूप में ले सकते हैं Z × R और जोड़ और गुणा को परिभाषित करें

(एन1, आर1) + (एन2, आर2) = (एन1 + एन2, आर1 + आर2),
(एन1, आर1) · (एन2, आर2) = (एन1n2, एन1r2 + एन2r1 + आर1r2).

तब R^ की गुणात्मक तत्समक है (1, 0). एक प्राकृतिक आरएनजी समरूपता है j : RR^ द्वारा परिभाषित j(r) = (0, r). इस मानचित्र में निम्नलिखित सार्वभौमिक संपत्ति है:

किसी भी रिंग एस और किसी भी रिंग समरूपता को देखते हुए f : RS, एक अद्वितीय रिंग समरूपता मौजूद है g : R^ → S ऐसा है कि f = gj.

मानचित्र जी द्वारा परिभाषित किया जा सकता है g(n, r) = n · 1S + f(r).

एक प्राकृतिक विशेषण वलय समरूपता है R^ → Z जो भेजता है (n, r) से एन। इस समरूपता का कर्नेल (रिंग थ्योरी) आर ^ में आर की छवि है। चूँकि j एकात्मक है, हम देखते हैं कि R एक (दो तरफा) आदर्श (रिंग थ्योरी) के रूप में R^ में भागफल वलय R^/R आइसोमॉर्फिक से 'Z' के रूप में सन्निहित है। यह इस प्रकार है कि

हर रिंग किसी न किसी रिंग में एक आदर्श है, और रिंग का हर आदर्श एक रिंग है।

ध्यान दें कि j कभी भी विशेषण नहीं है। इसलिए, भले ही R में पहले से ही एक पहचान तत्व हो, रिंग R^ एक अलग पहचान के साथ एक बड़ा होगा। रिंग R^ को अक्सर अमेरिकी गणितज्ञ जो ली दोरोह के नाम पर R का 'दोरोह एक्सटेंशन' कहा जाता है, जिन्होंने इसे सबसे पहले बनाया था।

एक पहचान तत्व को एक आरएनजी से जोड़ने की प्रक्रिया को श्रेणी सिद्धांत की भाषा में तैयार किया जा सकता है। यदि हम सभी रिंग और रिंग होमोमोर्फिज्म की श्रेणी को 'रिंग' से और सभी रिंग और रिंग होमोमोर्फिज्म की श्रेणी को 'Rng' से निरूपित करते हैं, तो 'रिंग' 'Rng' की एक (नॉनफुल) उपश्रेणी है। ऊपर दिए गए R^ का निर्माण समावेशन फ़नकार के लिए एक बाएँ आसन्न को उत्पन्न करता है I : RingRng. ध्यान दें कि रिंग, Rng की परावर्तक उपश्रेणी नहीं है क्योंकि समावेशन फ़ंक्टर पूर्ण नहीं है।

पहचान होने से कमजोर गुण

साहित्य में ऐसे कई गुण माने गए हैं जो पहचान तत्व होने से कमजोर हैं, लेकिन इतने सामान्य नहीं हैं। उदाहरण के लिए:

  • पर्याप्त idempotent के साथ छल्ले: एक rng R को पर्याप्त idempotent के साथ एक अंगूठी कहा जाता है जब ऑर्थोगोनल द्वारा दिए गए R का एक सबसेट E मौजूद होता है (यानी ef = 0 सभी के लिए ef ई में) idempotents (यानी। e2 = e सभी के लिए ई में ई) ऐसा है कि R = eE eR = eE Re.
  • स्थानीय इकाइयों के साथ छल्ले: प्रत्येक परिमित सेट आर के मामले में एक रिंग आर को स्थानीय इकाइयों के साथ एक अंगूठी कहा जाता है1, आर2, ..., आरtआर में हम ई को आर में पा सकते हैं जैसे कि e2 = e और eri = ri = rie हर मैं के लिए।
  • s-unital वलय: प्रत्येक परिमित समुच्चय r के मामले में एक rng R को s-unital कहा जाता है1, आर2, ..., आरtR में हम R में s ऐसे खोज सकते हैं कि sri = ri = ris हर मैं के लिए।
  • दृढ़ वलय: एक rng R को दृढ़ कहा जाता है यदि विहित समाकारिता RR RR द्वारा दिए गए rsrs एक समरूपता है।
  • इम्पोटेंट रिंग्स: एक रिंग आर को इम्पोटेंट (या एक आईएनजी) कहा जाता है यदि R2 = R, अर्थात, R के प्रत्येक अवयव r के लिए हम अवयव r खोज सकते हैंiऔर एसiआर में ऐसा है कि .

यह जाँचना कठिन नहीं है कि ये गुण पहचान तत्व होने की तुलना में कमजोर हैं और पिछले वाले की तुलना में कमजोर हैं।

  • अंगूठियां पर्याप्त बेवकूफों के साथ छल्ले होती हैं, जिनका उपयोग किया जाता है E = {1}. एक अंगूठी जिसमें पर्याप्त idempotents हैं जिनकी कोई पहचान नहीं है, उदाहरण के लिए एक फ़ील्ड पर अनंत मेट्रिसेस की अंगूठी है, जिसमें गैर-शून्य प्रविष्टियों की एक सीमित संख्या है। वे मेट्रिसेस जिनके मुख्य विकर्ण में सिर्फ 1 से अधिक एक तत्व है और 0 अन्यथा ऑर्थोगोनल इडेम्पोटेंट हैं।
  • पर्याप्त idempotents के साथ रिंग्स स्थानीय इकाइयों के साथ रिंग्स हैं जो परिभाषा को पूरा करने के लिए ऑर्थोगोनल idempotents के परिमित रकम लेते हैं।
  • स्थानीय इकाइयों के साथ रिंग्स विशेष रूप से एस-यूनिटल हैं; एस-यूनिटल रिंग्स फर्म हैं और फर्म रिंग्स इम्पोटेंट हैं।

वर्ग शून्य का रंग

वर्ग शून्य का एक रंग 'R ऐसा है कि xy = 0 R में सभी x और y के लिए।[3] गुणन को परिभाषित करके किसी भी एबेलियन समूह को वर्ग शून्य का एक रिंग बनाया जा सकता है ताकि xy = 0 सभी एक्स और वाई के लिए;[4] इस प्रकार प्रत्येक एबेलियन समूह किसी न किसी rng का योज्य समूह है। गुणात्मक पहचान के साथ वर्ग शून्य का एकमात्र रिंग शून्य वलय {0} है।[5] वर्ग शून्य के एक आरएनजी का कोई योगात्मक उपसमूह एक आदर्श (रिंग थ्योरी) है। इस प्रकार वर्ग शून्य का एक रिंग साधारण वलय है यदि और केवल यदि इसका योगात्मक समूह एक साधारण एबेलियन समूह है, अर्थात, प्रधान क्रम का चक्रीय समूह[6]


यूनिटल होमोमोर्फिज्म

दो इकाई बीजगणित A और B दिए गए हैं, एक बीजगणित समरूपता

एफ : ए → बी

'एकात्मक' है यदि यह A के पहचान तत्व को B के पहचान तत्व से मैप करता है।

यदि क्षेत्र (गणित) K पर साहचर्य बीजगणित A एकात्मक नहीं है, तो एक पहचान तत्व को निम्नानुसार जोड़ा जा सकता है: A × K अंतर्निहित K-वेक्टर स्थान के रूप में और गुणन को ∗ द्वारा परिभाषित करें

(x, r) ∗ (y, s) = (xy + sx + ry, rs)

x, y in A और r, s in K के लिए। फिर ∗ पहचान तत्व के साथ एक साहचर्य संक्रिया है (0, 1). पुराना बीजगणित A नए में निहित है, और वास्तव में A × K सार्वभौम निर्माण के अर्थ में A युक्त सबसे सामान्य इकाई बीजगणित है।

यह भी देखें

टिप्पणियाँ

  1. Jacobson 1989.
  2. Noether (1921), p. 30, §1.2.
  3. See Bourbaki, p. 102, where it is called a pseudo-ring of square zero. Some other authors use the term "zero ring" to refer to any rng of square zero; see e.g. Szele (1949) and Kreinovich (1995).
  4. Bourbaki, p. 102.
  5. Bourbaki, p. 102.
  6. Zariski and Samuel, p. 133.


संदर्भ

  • Bourbaki, N. (1998). Algebra I, Chapters 1–3. Springer.
  • Dummit, David S.; Foote, Richard M. (2003). Abstract Algebra (3rd ed.). Wiley. ISBN 978-0-471-43334-7.
  • Dorroh, J. L. (1932). "Concerning Adjunctions to Algebras". Bull. Amer. Math. Soc. 38 (2): 85–88. doi:10.1090/S0002-9904-1932-05333-2.
  • Jacobson, Nathan (1989). Basic algebra (2nd ed.). New York: W.H. Freeman. ISBN 0-7167-1480-9.
  • Kreinovich, V. (1995). "If a polynomial identity guarantees that every partial order on a ring can be extended, then this identity is true only for a zero-ring". Algebra Universalis. 33 (2): 237–242. doi:10.1007/BF01190935. MR 1318988. S2CID 122388143.
  • Herstein, I. N. (1996). Abstract Algebra (3rd ed.). Wiley. ISBN 978-0-471-36879-3.
  • McCrimmon, Kevin (2004). A taste of Jordan algebras. Springer. ISBN 978-0-387-95447-9.
  • Noether, Emmy (1921). "Idealtheorie in Ringbereichen" [Ideal theory in rings]. Mathematische Annalen (in German). 83 (1–2): 24–66. doi:10.1007/BF01464225. S2CID 121594471.{{cite journal}}: CS1 maint: unrecognized language (link)
  • Szele, Tibor (1949). "Zur Theorie der Zeroringe". Mathematische Annalen. 121: 242–246. doi:10.1007/bf01329628. MR 0033822. S2CID 122196446.
  • Zariski, Oscar; Samuel, Pierre (1958). Commutative Algebra. Vol. 1. Van Nostrand.