आरएनजी (बीजगणित)
Algebraic structures |
---|
गणित में, और अधिक विशेष रूप से सार बीजगणित में, आरएनजी (या गैर-इकाई वलय या कृत्रिम वलय) एक बीजगणितीय संरचना है जोगुणनात्मक समरूपता के अस्तित्व को ग्रहण किए बिना वलय के समान गुणों को संतुष्ट करती है। आरएनजी शब्द का अर्थ ये संकेत देना है कि यह i, यानी समरूप तत्व की आवश्यकता के बिना एक वलय है।[1]: 155–156
समुदाय में इस बात पर कोई सामान्य सहमति नहीं है कि गुणनात्मक समरूपता का अस्तित्व वलय सिद्धांतो में से एक होना चाहिए (देखें रिंग (गणित) § इतिहास)। आरएनजी शब्द का निर्माण इस अस्पष्टता को कम करने के लिए किया गया था जब लोग गुणनात्मक समरूपता के सिद्धांत के बिना एक वलय को स्पष्ट रूप से संदर्भित करना चाहते थे।
बीजगणित में विचार किए जाने वाले गणितीय विश्लेषण कार्य एकात्मक नहीं हैं, उदाहरण के लिए, विशेष रूप से कुछ संक्षिप्त समर्थन वाले स्थान पर बीजगणितीय कार्य अनंत से शून्य तक।
परिभाषा
औपचारिक रूप से, एक आरएनजी दो द्विआधारी संचालन (+, ·) के साथ एक समुच्चय (गणित) R है जिसे जोड़ और गुणा कहा जाता हैं।
'आरएनजी समरूपता' एक फलन f: R → S है जो एक आरएनजी से दूसरे आरएनजी में ऐसे है जैसे कि
- f(x + y) = f(x) + f(y)
- f(x · y) = f(x) · f(y)
R में सभी x और y के लिए।
यदि R और S वलय हैं, तो वलय समाकारिता R → S एक आरएनजी समरूपता R → S के समान है जो 1 से 1 को आलेखन करता है।
उदाहरण
सभी वलय आरएनजी हैं। आरएनजी का एक सरल उदाहरण जो कि वलय नहीं है, पूर्णांकों के सामान्य जोड़ और गुणन के साथ सम संख्या द्वारा दिया जाता है। एक अन्य उदाहरण सभी 3*3 वास्तविक मैट्रिक्स (गणित) के समुच्चय द्वारा दिया गया है जिसके नीचे की पंक्ति शून्य है। ये दोनों उदाहरण सामान्य तथ्य के उदाहरण हैं कि प्रत्येक (एक या दो तरफा) गुणावली एक वलय है।
आरएनजी अक्सर कार्यात्मक विश्लेषण में स्वाभाविक रूप से प्रकट होते हैं जब अनंत-आकारीय सदिश स्थान पर रैखिक संचालको पर विचार किया जाता है। उदाहरण के लिए किसी अनंत-आकारीय सदिश स्थान V को लें और सभी रैखिक संचालको के समुच्चय f : V → V के साथ परिमित पंक्ति (यानी dim f(V) < ∞) पर विचार करें। संचालको के जोड़ और कार्यात्मक संरचना के साथ, यह एक आरएनजी है, लेकिन वलय नहीं है। एक अन्य उदाहरण सभी वास्तविक अनुक्रमों का आरएनजी है जो अंशबद्ध संचालको के साथ 0 में परिवर्तित हो जाते हैं।
साथ ही, वितरण के सिद्धांत में होने वाले परीक्षण समारोह रिक्त स्थान में फ़ंक्शन कई होते हैं। अनंत पर शून्य से घटते हुए, जैसे उदा। श्वार्ट्ज अंतरिक्ष। इस प्रकार, फ़ंक्शन हर जगह एक के बराबर है, जो बिंदुवार गुणन के लिए एकमात्र संभावित पहचान तत्व होगा, ऐसी जगहों में मौजूद नहीं हो सकता है, जो इसलिए आरएनजीs (बिंदुवार जोड़ और गुणा के लिए) हैं। विशेष रूप से, कुछ टोपोलॉजिकल स्पेस पर परिभाषित कॉम्पैक्ट स्पेस सपोर्ट (गणित) के साथ वास्तविक-मूल्यवान निरंतर कार्य, बिंदुवार जोड़ और गुणा के साथ, एक आरएनजी बनाते हैं; यह एक वलय नहीं है जब तक कि अंतर्निहित स्थान कॉम्पैक्ट स्पेस न हो।
उदाहरण: सम पूर्णांक
सम पूर्णांकों का समुच्चय 2Z जोड़ और गुणन के तहत बंद है और इसकी एक योगात्मक पहचान है, 0, इसलिए यह एक आरएनजी है, लेकिन इसकी गुणक पहचान नहीं है, इसलिए यह वलय नहीं है।
2Z में, केवल गुणक Idempotence 0 है, केवल nilpotent 0 है, और सामान्यीकृत व्युत्क्रम वाला एकमात्र तत्व 0 है।
उदाहरण: परिमित पंचांग अनुक्रम
प्रत्यक्ष योग समन्वय-वार जोड़ और गुणन से सुसज्जित निम्नलिखित गुणों वाला एक आरएनजी है:
- इसके उदासीन तत्व बिना किसी ऊपरी सीमा के एक जाली बनाते हैं।
- प्रत्येक तत्व x का एक सामान्यीकृत व्युत्क्रम होता है, अर्थात् एक तत्व y ऐसा होता है xyx = x और yxy = y.
- के हर परिमित उपसमुच्चय के लिए , में एक बेवकूफ मौजूद है जो पूरे उपसमुच्चय के लिए एक पहचान के रूप में कार्य करता है: हर स्थिति में एक के साथ अनुक्रम जहां उपसमुच्चय में एक अनुक्रम में उस स्थिति में एक गैर-शून्य तत्व होता है, और हर दूसरी स्थिति में शून्य होता है।
गुण
- आदर्शों, भागफल के छल्ले और मॉड्यूल को छल्ले के समान ही rngs के लिए परिभाषित किया जा सकता है।
- हालाँकि, रिंगों के बजाय rngs के साथ काम करना कुछ संबंधित परिभाषाओं को जटिल बनाता है। उदाहरण के लिए, एक वलय R में, एक तत्व f द्वारा उत्पन्न बायाँ आदर्श ( f ) , जिसे f युक्त सबसे छोटे बाएँ आदर्श के रूप में परिभाषित किया गया है , केवल Rf है , लेकिन यदि R केवल एक rng है, तो Rf में f नहीं हो सकता है , इसलिए इसके बजाय
(f)=Rf+ Zf = {af + nf : a ∈ R and n ∈ Z}जहां nf को बार-बार जोड़ने/घटाने का उपयोग करके व्याख्या की जानी चाहिए क्योंकि n को R के तत्व का प्रतिनिधित्व करने की आवश्यकता नहीं है । इसी प्रकार, एक rng R के तत्वों f 1 , ..., f m द्वारा उत्पन्न बायाँ आदर्श है
(f1,....fm) = {a1 f1 + ...+ amfm + n1f1...nmfm : ai ∈ R and ni ∈ Z},
एक सूत्र जो एमी नोथेर तक जाता है । [2] मॉड्यूल के तत्वों के एक सेट द्वारा उत्पन्न सबमॉड्यूल की परिभाषा में इसी तरह की जटिलताएँ उत्पन्न होती हैं ।
- रिंगों के लिए कुछ प्रमेय rngs के लिए असत्य हैं। उदाहरण के लिए, एक अंगूठी में, प्रत्येक उचित आदर्श अधिकतम आदर्श में समाहित होता है , इसलिए एक अशून्य अंगूठी में हमेशा कम से कम एक अधिकतम आदर्श होता है। ये दोनों कथन rngs के लिए विफल हैं।
- एक rng समरूपता f : R → S किसी भी idempotent तत्व को एक idempotent तत्व में मैप करता है।
- यदि f : R → S रिंग से रिंग तक एक रिंग होमोमोर्फिज्म है, और f की छवि में S का गैर-शून्य-भाजक है , तो S एक रिंग है, और f एक रिंग होमोमोर्फिज्म है।
एक पहचान तत्व (दोरोह विस्तार) के साथ
प्रत्येक वलय R को एक पहचान तत्व से जोड़कर एक वलय R^ तक बढ़ाया जा सकता है। ऐसा करने का एक सामान्य तरीका यह है कि औपचारिक रूप से एक पहचान तत्व 1 को जोड़ा जाए और R^ में 1 के अभिन्न रैखिक संयोजनों और R के तत्वों को इस आधार के साथ शामिल किया जाए कि इसके गैर-अभिन्न अभिन्न गुणकों में से कोई भी संयोग नहीं करता है या R में समाहित नहीं है। , R^ के अवयव रूप के हैं
- n · 1 + r
जहाँ n एक पूर्णांक है और r ∈ R. गुणन को रैखिकता द्वारा परिभाषित किया गया है:
- (n1 + r1) · (n2 + r2) = n1n2 + n1r2 + n2r1 + r1r2.
अधिक औपचारिक रूप से, हम R^ को कार्तीय गुणनफल के रूप में ले सकते हैं Z × R और जोड़ और गुणा को परिभाषित करें
- (n1 + r1) · (n2 + r2) = n1n2 + n1r2 + n2r1 + r1r2.
- (n1, r1) · (n2, r2) = (n1n2, n1r2 + n2r1 + r1r2).
तब R^ की गुणात्मक तत्समक है (1, 0). एक प्राकृतिक आरएनजी समरूपता है j : R → R^ द्वारा परिभाषित j(r) = (0, r). इस मानचित्र में निम्नलिखित सार्वभौमिक संपत्ति है:
- किसी भी वलय एस और किसी भी वलय समरूपता को देखते हुए f : R → S, एक अद्वितीय वलय समरूपता मौजूद है g : R^ → S ऐसा है कि f = gj.
मानचित्र जी द्वारा परिभाषित किया जा सकता है g(n, r) = n · 1S + f(r).
एक प्राकृतिक विशेषण वलय समरूपता है R^ → Z जो भेजता है (n, r) से एन। इस समरूपता का कर्नेल (वलय थ्योरी) आर ^ में आर की छवि है। चूँकि j एकात्मक है, हम देखते हैं कि R एक (दो तरफा) गुणावली (वलय थ्योरी) के रूप में R^ में भागफल वलय R^/R आइसोमॉर्फिक से 'Z' के रूप में सन्निहित है। यह इस प्रकार है कि
- हर वलय किसी न किसी वलय में एक गुणावली है, और वलय का हर गुणावली एक वलय है।
ध्यान दें कि j कभी भी विशेषण नहीं है। इसलिए, भले ही R में पहले से ही एक पहचान तत्व हो, वलय R^ एक अलग पहचान के साथ एक बड़ा होगा। वलय R^ को अक्सर अमेरिकी गणितज्ञ जो ली दोरोह के नाम पर R का 'दोरोह एक्सटेंशन' कहा जाता है, जिन्होंने इसे सबसे पहले बनाया था।
एक पहचान तत्व को एक आरएनजी से जोड़ने की प्रक्रिया को श्रेणी सिद्धांत की भाषा में तैयार किया जा सकता है। यदि हम सभी वलय और वलय होमोमोर्फिज्म की श्रेणी को 'वलय' से और सभी वलय और वलय होमोमोर्फिज्म की श्रेणी को 'आरएनजी' से निरूपित करते हैं, तो 'वलय' 'आरएनजी' की एक (नॉनफुल) उपश्रेणी है। ऊपर दिए गए R^ का निर्माण समावेशन फ़नकार के लिए एक बाएँ आसन्न को उत्पन्न करता है I : Ring → Rng. ध्यान दें कि वलय, आरएनजी की परावर्तक उपश्रेणी नहीं है क्योंकि समावेशन फ़ंक्टर पूर्ण नहीं है।
पहचान होने से कमजोर गुण
साहित्य में ऐसे कई गुण माने गए हैं जो पहचान तत्व होने से कमजोर हैं, लेकिन इतने सामान्य नहीं हैं। उदाहरण के लिए:
- पर्याप्त स्थिरता के साथ वलय: एक आरएनजी R को पर्याप्त स्थिरता के साथ एक वलय कहा जाता है जब ऑर्थोगोनल द्वारा दिए गए R का एक सबसमुच्चय E मौजूद होता है (यानी ef = 0 सभी के लिए e ≠ f ई में) स्थिरताs (यानी। e2 = e सभी के लिए ई में ई) ऐसा है कि R = ⊕e∈E eR = ⊕e∈E Re.
- स्थानीय इकाइयों के साथ वलय: प्रत्येक परिमित समुच्चय आर के मामले में एक वलय आर को स्थानीय इकाइयों के साथ एक वलय कहा जाता है1, आर2, ..., आरtआर में हम ई को आर में पा सकते हैं जैसे कि e2 = e और eri = ri = rie हर मैं के लिए।
- s-unital वलय: प्रत्येक परिमित समुच्चय r के मामले में एक आरएनजी R को s-unital कहा जाता है1, आर2, ..., आरtR में हम R में s ऐसे खोज सकते हैं कि sri = ri = ris हर मैं के लिए।
- दृढ़ वलय: एक आरएनजी R को दृढ़ कहा जाता है यदि विहित समाकारिता R ⊗R R → R द्वारा दिए गए r ⊗ s ↦ rs एक समरूपता है।
- इम्पोटेंट वलय्स: एक वलय आर को इम्पोटेंट (या एक आईएनजी) कहा जाता है यदि R2 = R, अर्थात, R के प्रत्येक अवयव r के लिए हम अवयव r खोज सकते हैंiऔर एसiआर में ऐसा है कि .
यह जाँचना कठिन नहीं है कि ये गुण पहचान तत्व होने की तुलना में कमजोर हैं और पिछले वाले की तुलना में कमजोर हैं।
- वलय पर्याप्त बेवकूफों के साथ वलय होती हैं, जिनका उपयोग किया जाता है E = {1}. एक वलय जिसमें पर्याप्त स्थिरताs हैं जिनकी कोई पहचान नहीं है, उदाहरण के लिए एक फ़ील्ड पर अनंत मेट्रिसेस की वलय है, जिसमें गैर-शून्य प्रविष्टियों की एक सीमित संख्या है। वे मेट्रिसेस जिनके मुख्य विकर्ण में सिर्फ 1 से अधिक एक तत्व है और 0 अन्यथा ऑर्थोगोनल स्थिरता हैं।
- पर्याप्त स्थिरता के साथ वलय स्थानीय इकाइयों के साथ वलय् हैं जो परिभाषा को पूरा करने के लिए ऑर्थोगोनल स्थिरताs के परिमित रकम लेते हैं।
- स्थानीय इकाइयों के साथ वलय विशेष रूप से एस-यूनिटल हैं; एस-यूनिटल वलय्स फर्म हैं और फर्म वलय्स इम्पोटेंट हैं।
वर्ग शून्य का रंग
वर्ग शून्य का एक रंग 'R ऐसा है कि xy = 0 R में सभी x और y के लिए।[2]
गुणन को परिभाषित करके किसी भी एबेलियन समूह को वर्ग शून्य का एक वलय बनाया जा सकता है ताकि xy = 0 सभी x और y के लिए;[3] इस प्रकार प्रत्येक एबेलियन समूह किसी न किसी आरएनजी का योज्य समूह है।
गुणात्मक पहचान के साथ वर्ग शून्य का एकमात्र वलय शून्य वलय {0} है।[4]
वर्ग शून्य के एक आरएनजी का कोई योगात्मक उपसमूह एक गुणावली (वलय थ्योरी) है। इस प्रकार वर्ग शून्य का एक वलय साधारण वलय है यदि और केवल यदि इसका योगात्मक समूह एक साधारण एबेलियन समूह है, अर्थात, प्रधान क्रम का चक्रीय समूह।[5]
यूनिटल होमोमोर्फिज्म
दो इकाई बीजगणित A और B दिए गए हैं, एक बीजगणित समरूपता
- एफ : ए → बी
'एकात्मक' है यदि यह A के पहचान तत्व को B के पहचान तत्व से आलेखन करता है।
यदि क्षेत्र (गणित) K पर साहचर्य बीजगणित A एकात्मक नहीं है, तो एक पहचान तत्व को निम्नानुसार जोड़ा जा सकता है: A × K अंतर्निहित K-वेक्टर स्थान के रूप में और गुणन को ∗ द्वारा परिभाषित करें
- (x, r) ∗ (y, s) = (xy + sx + ry, rs)
x, y in A और r, s in K के लिए। फिर ∗ पहचान तत्व के साथ एक साहचर्य संक्रिया है (0, 1). पुराना बीजगणित A नए में निहित है, और वास्तव में A × K सार्वभौम निर्माण के अर्थ में A युक्त सबसे सामान्य इकाई बीजगणित है।
यह भी देखें
टिप्पणियाँ
- ↑ Jacobson 1989.
- ↑ See Bourbaki, p. 102, where it is called a pseudo-ring of square zero. Some other authors use the term "zero ring" to refer to any rng of square zero; see e.g. Szele (1949) and Kreinovich (1995).
- ↑ Bourbaki, p. 102.
- ↑ Bourbaki, p. 102.
- ↑ Zariski and Samuel, p. 133.
संदर्भ
- Bourbaki, N. (1998). Algebra I, Chapters 1–3. Springer.
- Dummit, David S.; Foote, Richard M. (2003). Abstract Algebra (3rd ed.). Wiley. ISBN 978-0-471-43334-7.
- Dorroh, J. L. (1932). "Concerning Adjunctions to Algebras". Bull. Amer. Math. Soc. 38 (2): 85–88. doi:10.1090/S0002-9904-1932-05333-2.
- Jacobson, Nathan (1989). Basic algebra (2nd ed.). New York: W.H. Freeman. ISBN 0-7167-1480-9.
- Kreinovich, V. (1995). "If a polynomial identity guarantees that every partial order on a ring can be extended, then this identity is true only for a zero-ring". Algebra Universalis. 33 (2): 237–242. doi:10.1007/BF01190935. MR 1318988. S2CID 122388143.
- Herstein, I. N. (1996). Abstract Algebra (3rd ed.). Wiley. ISBN 978-0-471-36879-3.
- McCrimmon, Kevin (2004). A taste of Jordan algebras. Springer. ISBN 978-0-387-95447-9.
- Noether, Emmy (1921). "Idealtheorie in Ringbereichen" [Ideal theory in rings]. Mathematische Annalen (in German). 83 (1–2): 24–66. doi:10.1007/BF01464225. S2CID 121594471.
{{cite journal}}
: CS1 maint: unrecognized language (link) - Szele, Tibor (1949). "Zur Theorie der Zeroringe". Mathematische Annalen. 121: 242–246. doi:10.1007/bf01329628. MR 0033822. S2CID 122196446.
- Zariski, Oscar; Samuel, Pierre (1958). Commutative Algebra. Vol. 1. Van Nostrand.