स्पिन संक्रमण
This article does not cite any sources. (February 2016) (Learn how and when to remove this template message) |
This article may be too technical for most readers to understand.September 2010) (Learn how and when to remove this template message) ( |
प्रचक्रण परिवर्तन आण्विक रसायन शास्त्र में दो इलेक्ट्रॉनिक स्तिथियों के बीच परिवर्तन का एक उदाहरण है। इलेक्ट्रॉन की एक स्थिर से दूसरे स्थिर (या मितस्थायित्व) इलेक्ट्रॉनिक स्तिथि में एक प्रतिवर्ती और पता लगाने योग्य आचरण में पारगमन करने की क्षमता, इन आणविक प्रणालियों को आणविक इलेक्ट्रॉनिक्स के क्षेत्र में आकर्षक बनाती है।
अष्टफलकीय परिवेश में
जब विन्यास का एक परिवर्तन धातु आयन , को , अष्टभुजाकार परिवेश में है, इसकी मूल अवस्था निम्न प्रचक्रण (LS) या उच्च प्रचक्रण (HS) हो सकती है, जो कि परिमाण के पहले सन्निकटन पर निर्भर करता है। और धातु कक्षीय के बीच ऊर्जा अंतराल के परिमाण पर पहले सन्निकटन के आधार पर औसत प्रचक्रण युग्मन ऊर्जा के सापेक्ष (स्फटिक क्षेत्र सिद्धांत देखें)। अधिक शुद्ध रुप से, के लिए, मूल अवस्था उस विन्यास से उत्पन्न होती है जहां इलेक्ट्रॉन पहले कम ऊर्जा वाले कक्षीय पर ग्रहण करते हैं, और यदि छह से अधिक इलेक्ट्रॉन हैं, तो उच्च ऊर्जा वाले कक्षीय पर ग्रहण करते हैं। मूल अवस्था तब एलएस है। दूसरी ओर, के लिए, हुंड के नियम का पालन किया जाता है। एचएस मूल अवस्था को मुक्त धातु आयन के समान बहुलता (रसायन विज्ञान) मिली है। यदि और के मान तुलनीय हैं, तब एक LS↔HS परिवर्तन हो सकता है।
विन्यास
धातु आयन के सभी संभव विन्यासों के बीच, और तक सबसे महत्वपूर्ण हैं। प्रचक्रण परिवर्तन घटना, वास्तव में, पहली बार 1930 में ट्रिस (डाइथियोकार्बामेटो) लोहे (III) यौगिकों के लिए देखी गई थी। दूसरी ओर, लोहे (द्वितीय) प्रचक्रण परिवर्तन संकुल का सबसे व्यापक रूप से अध्ययन किया गया था: इन दोनों में से विक्षनरी के रूप में माना जा सकता है: प्रचक्रण परिवर्तन प्रणालियों का उच्चारण, अर्थात् Fe (NCS)2(BP)2 और Fe (NCS)2(phen)2 (bipy = 2,2'-बाइपिरिडीन और फेन = 1,10-फेनेंथ्रोलाइन) है।
लोहे (द्वितीय) संकुल
हम लौह (II) संकुल के विशिष्ट स्तिथि पर ध्यान केंद्रित करके प्रचक्रण परिवर्तन के तंत्र पर चर्चा करते हैं। आणविक मापक्रम पर प्रचक्रण परिवर्तन स्थानांतरित इलेक्ट्रॉनों के प्रचक्रण प्रतिवर्न के साथ एक आंतरिक इलेक्ट्रॉन स्थानांतरण से मेल खाता है। लोहे (द्वितीय) यौगिक के लिए इस स्थानांतरण में दो इलेक्ट्रॉन सम्मिलित हैं और प्रचक्रण विविधताएं हैं। कार्यक्षेत्र की अधिभोग HS स्थिति में LS स्थिति की तुलना में अधिक है और ये कार्यक्षेत्र की तुलना में अधिक प्रतिरक्षी हैं। यह इस प्रकार है कि एलएस स्तिथि की तुलना में एचएस स्तिथि में औसत धातु-लिगैंड बांड की लंबाई लंबी है। यह अंतर लोहे (II) यौगिकों के लिए 1.4-2.4 pm की सीमा में है।
एक प्रचक्रण परिवर्तन प्रेरित करने के लिए
प्रचक्रण परिवर्तन को प्रेरित करने का सबसे सामान्य तरीका प्रणाली के तापमान को बदलना है: तब परिवर्तन की विशेषता होगी, जहाँ उच्च-प्रचक्रण अवस्था में अणुओं का दाढ़ अंश है। इस तरह के वक्र प्राप्त करने के लिए वर्तमान में कई तकनीकों का उपयोग किया जाता है। सबसे सरल विधि में दाढ़ संवेदनशीलता की तापमान निर्भरता को मापने के होते हैं। कोई अन्य तकनीक जो स्तिथि के एलएस या एचएस के अनुसार अलग-अलग प्रतिक्रिया प्रदान करती है, का भी निर्धारण करने के लिए उपयोग किया जा सकता है। इन तकनीकों में, मोसबाउर स्पेक्ट्रोमिकी लोहे के यौगिक के स्तिथि में विशेष रूप से उपयोगी रही है, जो दो अच्छी तरह से हल किए गए चतुर्भुज युग्म दिखाते हैं। इनमें से एक एलएस अणुओं के साथ जुड़ा हुआ है, दूसरा एचएस अणुओं के साथ: उच्च-प्रचक्रण दाढ़ का अंश तब दोहरे की सापेक्ष तीव्रता से घटाया जा सकता है।
परिवर्तन के प्रकार
विभिन्न प्रकार के परिवर्तन देखे गए हैं। यह अचानक हो सकता है, कुछ केल्विन सीमा के भीतर हो सकता है, या बड़े तापमान सीमा के भीतर होने वाला सुचारू हो सकता है। यह कम तापमान और उच्च तापमान दोनों पर भी अधूरा हो सकता है, भले ही बाद वाला अधिक बार देखा गया हो। इसके अतिरिक्त, शीतलन या ऊष्मण प्रणाली में वक्र बिल्कुल समान हो सकते हैं, या एक शैथिल्य प्रदर्शित कर सकते हैं: इस स्तिथि में प्रणाली तापमान की एक निश्चित सीमा में दो अलग-अलग इलेक्ट्रॉनिक स्तिथिों को ग्रहण कर सकता है। अंत में परिवर्तन दो चरणों में हो सकता है।
यह भी देखें
श्रेणी:क्वांटम रसायन