समस्थानिक बदलाव (जिसे समस्थानिक बदलाव भी कहा जाता है) स्पेक्ट्रोमिकी के विभिन्न रूपों में बदलाव है जो तब होता है जब एक परमाणु समस्थानिक को दूसरे से बदल दिया जाता है।
एनएमआर स्पेक्ट्रोमिकी में, रासायनिक बदलाव पर समस्थानिक प्रभाव सामान्यतः बदलाव को मापने के लिए विशिष्ट इकाई 1 पीपीएम से कम होते हैं। 1 H 2 और 1 H2 H (एच.डी.) के लिए 1 H एनएमआर संकेतों को उनके रासायनिक बदलावों के संदर्भ में सरलता से अलग किया जाता है। CD 2Cl 2 में प्रोटियो अशुद्धता के लिए संकेत की विषमता CDHCl 2 और CH 2Cl 2 के विभिन्न रासायनिक बदलावों से उत्पन्न होती है।
फ़ाइल: H2&HDlowRes.tiff|thumb|HD (लाल पट्टियों के साथ लेबल) और H के समाधान का बायां भाग2 (नीली पट्टी)। के युग्मन से 1:1:1 त्रिक उत्पन्न होता है 1H नाभिक (परमाणु स्पिन = 1/2) को 2H नाभिक (I = 1)।
कंपन स्पेक्ट्रा
समस्थानिक बदलाव सबसे अच्छी तरह से ज्ञात हैं और कंपन स्पेक्ट्रोमिकी में सबसे व्यापक रूप से उपयोग किए जाते हैं जहां बदलाव बड़े होते हैं, जो समस्थानिक द्रव्यमान के वर्गमूल के अनुपात के अनुपात में होते हैं। हाइड्रोजन के मामले में, एच-डी बदलाव है (1/2)1/2 या 1/1.41। इस प्रकार, (पूरी तरह से सममित) सी-एच कंपन के लिए CH 4 और CD 4 2917 सेमी पर होता है-1 और 2109 सेमी-1, क्रमशः।[1] यह बदलाव प्रभावित बांडों के लिए अलग-अलग घटे हुए द्रव्यमान को दर्शाता है।
परमाणु स्पेक्ट्रा
परमाणु स्पेक्ट्रा में समस्थानिक बदलाव एक ही तत्व के समस्थानिकों के इलेक्ट्रॉनिक ऊर्जा स्तरों के बीच अंतर हैं। परमाणु और परमाणु भौतिकी के लिए उनके महत्व के कारण वे कई सैद्धांतिक और प्रायोगिक प्रयासों का केंद्र हैं। अगर परमाणु स्पेक्ट्रा में अतिसूक्ष्म संरचना भी होती है तो बदलाव स्पेक्ट्रा के गुरुत्वाकर्षण के केंद्र को संदर्भित करता है।
परमाणु भौतिकी के दृष्टिकोण से, समस्थानिक बदलाव परमाणु संरचना का अध्ययन करने के लिए विभिन्न सटीक परमाणु भौतिकी जांचों को जोड़ते हैं, और उनका मुख्य उपयोग परमाणु-मॉडल-आवेश-त्रिज्या अंतरों का स्वतंत्र निर्धारण है।
इस बदलाव में दो प्रभाव योगदान करते हैं:
सामूहिक प्रभाव
द्रव्यमान अंतर (मास बदलाव), जो प्रकाश तत्वों के समस्थानिक बदलाव पर हावी होता है।[2] यह परंपरागत रूप से कम इलेक्ट्रॉनिक द्रव्यमान में परिवर्तन और एक विशिष्ट द्रव्यमान-बदलाव (एसएमएस) जो बहु-इलेक्ट्रॉन परमाणुओं और आयनों में मौजूद है, के परिणामस्वरूप एक सामान्य द्रव्यमान बदलाव (एनएमएस) में विभाजित है।
एनएमएस विशुद्ध रूप से कीनेमेटिकल प्रभाव है, जिसका ह्यूजेस और एकर्ट द्वारा सैद्धांतिक रूप से अध्ययन किया गया है।[3] इसे निम्नानुसार तैयार किया जा सकता है:
परमाणु के एक सैद्धांतिक मॉडल में, जिसमें असीम रूप से भारी नाभिक होता है, एक संक्रमण की ऊर्जा (तरंगों में) की गणना Rydberg सूत्र से की जा सकती है
कहाँ और प्रमुख क्वांटम संख्याएँ हैं, और रिडबर्ग नियतांक है।
हालांकि, परिमित द्रव्यमान वाले नाभिक के लिए , इलेक्ट्रॉन के द्रव्यमान के बजाय रिडबर्ग स्थिरांक की अभिव्यक्ति में कम द्रव्यमान का उपयोग किया जाता है:
लगभग परमाणु द्रव्यमान वाले दो समस्थानिकों के साथ और , तो उसी संक्रमण की ऊर्जाओं में अंतर है
उपरोक्त समीकरणों का अर्थ है कि इस तरह का द्रव्यमान परिवर्तन हाइड्रोजन और ड्यूटेरियम के लिए सबसे बड़ा है क्योंकि उनका द्रव्यमान अनुपात सबसे बड़ा है .
विशिष्ट द्रव्यमान बदलाव का प्रभाव सबसे पहले हंतारो नागाओका और मिशिमा द्वारा नियॉन समस्थानिकों के स्पेक्ट्रम में देखा गया था।[4]
बहु-इलेक्ट्रॉन परमाणुओं के श्रोडिंगर समीकरण में गतिज ऊर्जा ऑपरेटर को ध्यान में रखते हुए,
एक स्थिर परमाणु के लिए संवेग संरक्षण देता है
इसलिए, गतिज ऊर्जा संचालिका बन जाती है
दूसरे पद की उपेक्षा करते हुए, समीकरण के शेष दो पदों को जोड़ा जा सकता है और मूल द्रव्यमान पद को कम द्रव्यमान द्वारा प्रतिस्थापित करने की आवश्यकता है , और यह ऊपर तैयार की गई सामान्य द्रव्यमान पारी देता है।
गतिज शब्द में दूसरा शब्द वर्णक्रमीय रेखाओं में एक अतिरिक्त समस्थानिक बदलाव देता है जिसे विशिष्ट द्रव्यमान बदलाव के रूप में जाना जाता है
क्षोभ सिद्धांत का उपयोग करते हुए, प्रथम क्रम ऊर्जा बदलाव की गणना इस रूप में की जा सकती है
जिसके लिए सटीक बहु-इलेक्ट्रॉन तरंग फ़ंक्शन के ज्ञान की आवश्यकता होती है। की वजह अभिव्यक्ति में पद, विशिष्ट जन बदलाव के रूप में भी घट जाती है जैसे-जैसे नाभिक का द्रव्यमान बढ़ता है, सामान्य द्रव्यमान परिवर्तन के समान।
मात्रा प्रभाव
आयतन अंतर (फ़ील्ड बदलाव) भारी तत्वों के समस्थानिक बदलाव पर हावी है। यह अंतर नाभिक के विद्युत आवेश वितरण में परिवर्तन को प्रेरित करता है। इस घटना का सैद्धांतिक रूप से पाउली और पीयरल्स द्वारा वर्णन किया गया था।[5][6][7] एक सरलीकृत चित्र को अपनाते हुए, आयतन अंतर से उत्पन्न ऊर्जा स्तर में परिवर्तन, माध्य-वर्ग आवेश त्रिज्या अंतर के मूल समय पर कुल इलेक्ट्रॉन संभाव्यता घनत्व में परिवर्तन के समानुपाती होता है।
एक परमाणु के एक साधारण परमाणु मॉडल के लिए जहां परमाणु चार्ज समान रूप से त्रिज्या वाले क्षेत्र में वितरित किया जाता है जहां ए परमाणु द्रव्यमान संख्या है और एक स्थिरांक है।
इसी प्रकार, एक क्षेत्र में समान रूप से वितरित एक आदर्श चार्ज घनत्व की इलेक्ट्रोस्टैटिक क्षमता की गणना, परमाणु इलेक्ट्रोस्टैटिक क्षमता है
फिर अविचलित हैमिल्टन को घटाया जाता है, क्षोभ उपरोक्त समीकरण और कूलम्ब क्षमता में क्षमता का अंतर है .
परमाणु प्रणाली का ऐसा परिशोधन सापेक्षतावादी सुधार जैसे अन्य सभी संभावित प्रभावों की उपेक्षा करता है। क्षोभ सिद्धांत (क्वांटम यांत्रिकी) का उपयोग करते हुए, इस तरह के क्षोभ के कारण प्रथम-क्रम ऊर्जा बदलाव है
तरंग समारोह के बाद से रेडियल और कोणीय भाग हैं, और गड़बड़ी की कोई कोणीय निर्भरता नहीं है, इसलिए गोलाकार हार्मोनिक इकाई क्षेत्र पर अभिन्न अंग को सामान्य करता है
नाभिक की त्रिज्या के बाद से छोटा है, और इतने छोटे क्षेत्र के भीतर , निम्नलिखित सन्निकटन मान्य है . और कम से , केवल s सबलेवल बचा है, इसलिए . एकीकरण देता है
हाइड्रोजनिक तरंग फलन के लिए स्पष्ट रूप देता है .
एक वास्तविक प्रयोग में, विभिन्न समस्थानिकों के इस ऊर्जा परिवर्तन का अंतर मापा जाता है। इन समस्थानिकों में परमाणु त्रिज्या अंतर होता है . उपरोक्त समीकरण का विभेदन पहला क्रम देता है .
उपरोक्त समीकरण पुष्टि करता है कि बड़े Z के साथ हाइड्रोजनिक परमाणुओं के लिए आयतन प्रभाव अधिक महत्वपूर्ण है, जो बताता है कि भारी तत्वों के समस्थानिक बदलाव पर आयतन प्रभाव क्यों हावी है।
↑Brix, P.; Kopfermann, H. (1951). "Neuere Ergebnisse zum Isotopieverschiebungseffekt in den Atomspektren". Festschrift zur Feier des Zweihundertjährigen Bestehens der Akademie der Wissenschaften in Göttingen. Springer. pp. 17–49. doi:10.1007/978-3-642-86703-3_2. ISBN978-3-540-01540-6.