स्टोचैस्टिक सिमुलेशन
प्रसंभाव्य अनुरूपण एक ऐसी प्रणाली का अनुकरण है जिसमे ऐसे चर (गणित) हैं जो अलग-अलग संभावनाओं के साथ यादृच्छिक रूप से परिवर्तित हो सकते हैं।[1]
जब इन यादृच्छिक चरों का प्रत्यक्षीकरण उत्पन्न होता है तब प्रणाली के एक मॉडल में प्रयुक्त किया जाता है और मॉडल के आउटपुट को रिकॉर्ड किया जाता हैं। इस प्रक्रिया को पुनः यादृच्छिक मानों के नए समूह के साथ दोहराया जाता है। पर्याप्त मात्रा में आंकड़ा एकत्र होने तक इन चरणों को दोहराया जाता है। अंत में आउटपुट का वितरण (गणित) सबसे अधिक संभावित अनुमानों के साथ-साथ अपेक्षाओं के संबंध में एक सूची को प्रदर्शित किया जाता है कि चर के अपेक्षाकृत कम या अधिक संभावित मानों की सीमा क्या है।[1]
प्रायः मॉडल में प्रयुक्त किए गए यादृच्छिक चर कंप्यूटर पर एक यादृच्छिक संख्या (आरएनजी) के साथ बनाए जाते हैं। जिससे यादृच्छिक संख्या U(0,1) के समान वितरण आउटपुट को यादृच्छिक चर में परिवर्तित कर दिया जाता है जो कि प्रणाली मॉडल में उपयोग किए जाने वाले संभाव्यता वितरण के समान होता है।
व्युत्पत्ति
प्रसंभाव्य अनुरूपण का मूल अर्थ "अनुमान से संबंधित" था। ग्रीक शब्द "स्टोखस्टिकोस" का अर्थ अनुमान लगाने में सक्षम और अनुमान लगाने से था। शब्द "स्टोखज़ेस्थई" का अर्थ भी अनुमान से था। और शब्द "स्टोखोस" का अर्थ अनुमान, उद्देश्य, लक्ष्य, चिन्ह से था। यादृच्छिक रूप से निर्धारित संभावनाओ को पहली बार 1934 में जर्मन स्टोचैस्टिक मे प्रस्तुत किया गया था।
असतत-घटना अनुरूपण
प्रसंभाव्य अनुरूपण में अगली घटना का निर्धारण करने के लिए मॉडल की स्थिति में सभी संभावित परिवर्तनों की दरों की गणना की जाती है, और फिर एक सरणी में क्रमबद्ध किया जाता है। अगला, सरणी का संचयी योग लिया जाता है, और अंतिम सेल में संख्या R होती है, जहाँ R कुल घटना दर है। यह संचयी सरणी अब एक असतत संचयी वितरण है, और एक यादृच्छिक संख्या z~U(0,R) चुनकर और पहली घटना को चुनकर अगली घटना को चुनने के लिए इस्तेमाल किया जा सकता है, जैसे कि z उस घटना से जुड़ी दर से कम है।
संभाव्यता वितरण
यादृच्छिक चर के संभावित परिणाम का वर्णन करने के लिए प्रायिकता वितरण का उपयोग किया जाता है।
परिणामों को सीमित करता है जहां चर केवल असतत मान ले सकता है।
बरनौली वितरण
एक यादृच्छिक चर एक्स बर्नौली वितरण है | बर्नौली-पैरामीटर पी के साथ वितरित किया गया है यदि इसके दो संभावित परिणाम हैं जो आमतौर पर 1 (सफलता या डिफ़ॉल्ट) या 0 (विफलता या उत्तरजीविता) को एन्कोड किया गया है। वित्तीय जोखिम उपायों के लिए एक संभावना मेट्रिक्स दृष्टिकोण| जहां सफलता और असफलता की संभावनाएं हैं एक यादृच्छिक संख्या जनरेटर द्वारा किए गए यू (0,1) समान वितरण से बर्नौली वितरण के साथ एक यादृच्छिक चर एक्स का उत्पादन करने के लिए, हम परिभाषित करते हैं
इस तरह की संभावना के लिए रेफरी नाम = कवरेज, एफ.एम. फ्रेडरिक मिशेल, 1946–2005
उदाहरण: सिक्के का उछाल
परिभाषित करना
द्विपद वितरण
पैरामीटर n और p के साथ एक द्विपद वितरण यादृच्छिक चर Y को n स्वतंत्र और समान रूप से बर्नौली वितरण के योग के रूप में प्राप्त किया जाता है | बर्नौली-वितरित यादृच्छिक चर X1, एक्स2, ..., एक्सn[2]
उदाहरण: एक सिक्के को तीन बार उछाला जाता है। ठीक दो चित आने की प्रायिकता ज्ञात कीजिए। नमूना स्थान को देखकर इस समस्या को हल किया जा सकता है। दो सिर पाने के तीन तरीके हैं।
उत्तर 3/8 (= 0.375) है।[3]
विष वितरण
एक पोइसन प्रक्रिया एक ऐसी प्रक्रिया है जहां समय या स्थान के अंतराल में घटनाएं अनियमित रूप से घटित होती हैं। <रेफरी नाम = डेकिंग, एफ.एम. फ्रेडरिक मिशेल, 1946–2005 />[4] निरंतर दर λ प्रति समय अंतराल के साथ पॉइसन प्रक्रियाओं के लिए प्रायिकता वितरण निम्नलिखित समीकरण द्वारा दिया गया है।[2]
एक स्थिर दर के साथ पॉसों प्रक्रिया का अनुकरण करना घटनाओं की संख्या के लिए जो अन्तराल में होता है निम्नलिखित एल्गोरिथम के साथ किया जा सकता है।[5]
- के साथ शुरू और
- यादृच्छिक चर उत्पन्न करें से वर्दी वितरण
- के साथ समय अपडेट करें
- अगर , फिर रुको। अन्यथा चरण 5 जारी रखें।
- चरण 2 जारी रखें
तरीके
प्रत्यक्ष और पहली प्रतिक्रिया के तरीके
1977 में और गिलेस्पी द्वारा प्रकाशित, और संचयी सरणी पर एक रेखीय खोज है। गिलेस्पी एल्गोरिथम देखें।
गिलेस्पी का स्टोचैस्टिक अनुरूपण एल्गोरिथम (एसएसए) अनिवार्य रूप से ऐसी प्रणाली में निहित यादृच्छिकता का उचित लेखा-जोखा लेकर एक अच्छी तरह से उत्तेजित रासायनिक प्रतिक्रिया प्रणाली के समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए एक सटीक प्रक्रिया है।[6] यह सख्ती से उसी माइक्रोफिजिकल आधार पर आधारित है जो रासायनिक मास्टर समीकरण को रेखांकित करता है और ओडीई द्वारा गणितीय रूप से प्रस्तुत नियतात्मक प्रतिक्रिया दर समीकरण (आरआरई) की तुलना में सिस्टम के विकास का अधिक यथार्थवादी प्रतिनिधित्व देता है।[6]
जैसा कि रासायनिक मास्टर समीकरण के साथ होता है, एसएसए अभिकारकों की बड़ी संख्या की सीमा में, बड़े पैमाने पर कार्रवाई के कानून के समान समाधान के लिए अभिसरण करता है।
अगली प्रतिक्रिया विधि
गिब्सन और ब्रुक द्वारा 2000 में प्रकाशित।[7] यह पहली प्रतिक्रिया पद्धति पर एक सुधार है जहां अप्रयुक्त प्रतिक्रिया समय का पुन: उपयोग किया जाता है। प्रतिक्रियाओं के नमूने को और अधिक कुशल बनाने के लिए, प्रतिक्रिया समय को संग्रहीत करने के लिए अनुक्रमित प्राथमिकता कतार का उपयोग किया जाता है। दूसरी ओर, प्रवृत्तियों की पुनर्गणना को और अधिक कुशल बनाने के लिए, एक निर्भरता ग्राफ का उपयोग किया जाता है। यह निर्भरता ग्राफ बताता है कि किसी विशेष प्रतिक्रिया के बाद कौन सी प्रतिक्रिया की प्रवृत्ति को अपडेट करना है।
अनुकूलित और छँटाई प्रत्यक्ष तरीके
प्रकाशित 2004[8] और 2005। एल्गोरिथम की औसत खोज गहराई को कम करने के लिए ये विधियाँ संचयी सरणी को सॉर्ट करती हैं। पूर्व प्रतिक्रियाओं की फायरिंग आवृत्ति का अनुमान लगाने के लिए एक अनुमान लगाता है, जबकि बाद वाला संचयी सरणी ऑन-द-फ्लाई को सॉर्ट करता है।
लघुगणक प्रत्यक्ष विधि
2006 में प्रकाशित। यह संचयी सरणी पर एक द्विआधारी खोज है, इस प्रकार ओ (लॉग एम) के लिए प्रतिक्रिया नमूनाकरण की सबसे खराब समय जटिलता को कम करता है।
आंशिक-प्रवृत्ति विधियाँ
2009, 2010 और 2011 में प्रकाशित (रामास्वामी 2009, 2010, 2011)। प्रतिक्रियाओं की (बड़ी) संख्या के बजाय, नेटवर्क में प्रजातियों की संख्या के साथ कम्प्यूटेशनल लागत को कम करने के लिए फैक्टर-आउट, आंशिक प्रतिक्रिया प्रवृत्तियों का उपयोग करें। चार प्रकार मौजूद हैं:
- पीडीएम, आंशिक-प्रवृत्ति प्रत्यक्ष विधि। एक कम्प्यूटेशनल लागत है जो प्रतिक्रिया नेटवर्क में विभिन्न प्रजातियों की संख्या के साथ रैखिक रूप से मापती है, नेटवर्क के युग्मन वर्ग से स्वतंत्र (रामास्वामी 2009)।
- एसपीडीएम, सॉर्टिंग आंशिक-प्रवृत्ति प्रत्यक्ष विधि। मल्टी-स्केल रिएक्शन नेटवर्क में कम्प्यूटेशनल लागत के पूर्व-कारक को कम करने के लिए डायनेमिक बबल सॉर्ट का उपयोग करता है, जहां प्रतिक्रिया दर परिमाण के कई आदेशों (रामास्वामी 2009) तक फैली हुई है।
- PSSA-CR, रचना-अस्वीकृति नमूनाकरण के साथ आंशिक-प्रवृत्ति SSA। संरचना-अस्वीकृति नमूनाकरण (स्लीपॉय 2008) का उपयोग करके कमजोर युग्मित नेटवर्क (रामास्वामी 2010) के लिए निरंतर समय (यानी, नेटवर्क आकार से स्वतंत्र) के लिए कम्प्यूटेशनल लागत को कम करता है।
- dPDM, विलंब आंशिक-प्रवृत्ति प्रत्यक्ष विधि। देरी-एसएसए विधि (ब्रैटसन 2005, कै 2007) का आंशिक-प्रवृत्ति संस्करण प्रदान करके समय में देरी (रामास्वामी 2011) करने वाले प्रतिक्रिया नेटवर्क के लिए पीडीएम का विस्तार करता है।
आंशिक-प्रवृत्ति विधियों का उपयोग प्राथमिक रासायनिक प्रतिक्रियाओं तक सीमित है, अर्थात, अधिकतम दो अलग-अलग अभिकारकों के साथ प्रतिक्रियाएँ। नेटवर्क आकार में एक रेखीय (प्रतिक्रिया के क्रम में) वृद्धि की कीमत पर, प्रत्येक गैर-प्राथमिक रासायनिक प्रतिक्रिया को समान रूप से प्राथमिक के एक सेट में विघटित किया जा सकता है।
अनुमानित तरीके
स्टोचैस्टिक अनुरूपण का एक सामान्य दोष यह है कि बड़ी प्रणालियों के लिए, बहुत सी घटनाएं होती हैं, जिन्हें एक अनुरूपण में ध्यान में नहीं रखा जा सकता है। निम्नलिखित विधियाँ कुछ सन्निकटन द्वारा नाटकीय रूप से अनुरूपण गति में सुधार कर सकती हैं।
τ छलांग लगाने की विधि
चूंकि एसएसए विधि प्रत्येक संक्रमण का ट्रैक रखती है, उच्च समय जटिलता के कारण कुछ अनुप्रयोगों के लिए इसे लागू करना अव्यावहारिक होगा। गिलेस्पी ने एक सन्निकटन प्रक्रिया, छलांग लगाने वाले वर्ष | ताऊ-लीपिंग विधि प्रस्तावित की, जो सटीकता के न्यूनतम नुकसान के साथ कम्प्यूटेशनल समय को कम करती है।[9] समय में वृद्धिशील कदम उठाने के बजाय, एसएसए विधि के रूप में प्रत्येक समय कदम पर एक्स (टी) का ट्रैक रखने के बजाय, ताऊ-लीपिंग | ताऊ-लीपिंग विधि एक सबइंटरवल से अगले तक छलांग लगाती है, अनुमान लगाती है कि एक के दौरान कितने संक्रमण होते हैं। उपअंतराल दिया। यह माना जाता है कि छलांग का मान, τ, इतना छोटा है कि उपअंतराल [t, t + τ] के साथ संक्रमण दरों के मूल्य में कोई महत्वपूर्ण परिवर्तन नहीं होता है। इस स्थिति को छलांग की स्थिति के रूप में जाना जाता है। ताऊ-लीपिंग|ताऊ-लीपिंग विधि इस प्रकार महत्वपूर्ण सटीकता खोए बिना एक छलांग में कई बदलावों का अनुकरण करने का लाभ उठाती है, जिसके परिणामस्वरूप कम्प्यूटेशनल समय में गति बढ़ जाती है।[10]
सशर्त अंतर विधि
यह विधि प्रतिवर्ती प्रक्रिया की विरोधी घटनाओं की केवल शुद्ध दरों को ध्यान में रखते हुए प्रतिवर्ती प्रक्रियाओं (जिसमें यादृच्छिक चलना/प्रसार प्रक्रियाएं शामिल हैं) का अनुमान लगाती है। इस पद्धति का मुख्य लाभ यह है कि इसे मॉडल की पिछली संक्रमण दरों को नई, प्रभावी दरों के साथ बदलकर एक सरल if-स्टेटमेंट के साथ लागू किया जा सकता है। इस प्रकार बदली हुई संक्रमण दर वाले मॉडल को हल किया जा सकता है, उदाहरण के लिए, पारंपरिक एसएसए के साथ।[11]
निरंतर अनुकरण
जबकि डिस्क्रीट राज्य अंतरिक्ष में यह निरंतर स्पेस में विशेष स्टेट्स (मानों) के बीच स्पष्ट रूप से अलग होता है, यह निश्चित निरंतरता के कारण संभव नहीं है। सिस्टम आमतौर पर समय के साथ बदलता है, मॉडल के चर, फिर भी लगातार बदलते रहते हैं। निरंतर अनुकरण इस प्रकार समय के साथ प्रणाली का अनुकरण करता है, राज्य चर के परिवर्तन की दरों को निर्धारित करने वाले अंतर समीकरण दिए गए हैं।[12] सतत प्रणाली का उदाहरण शिकारी/शिकार मॉडल है[13] या कार्ट-पोल संतुलन [14]
संभाव्यता वितरण
सामान्य वितरण
यादृच्छिक चर X को मापदंडों के साथ सामान्य वितरण कहा जाता है μ और σ, द्वारा संक्षिप्त किया गया X ∈ N(μ, σ2), यदि यादृच्छिक चर का घनत्व सूत्र द्वारा दिया गया है [2]
घातीय वितरण
घातीय वितरण एक पोइसन प्रक्रिया में घटनाओं के बीच के समय का वर्णन करता है, अर्थात एक ऐसी प्रक्रिया जिसमें घटनाएं लगातार और स्वतंत्र रूप से एक स्थिर औसत दर पर होती हैं।
घातीय वितरण लोकप्रिय है, उदाहरण के लिए, कतार सिद्धांत में जब हम उस समय का मॉडल बनाना चाहते हैं जब तक हमें एक निश्चित घटना होने तक इंतजार करना पड़ता है। उदाहरणों में वह समय शामिल है जब तक कि अगला ग्राहक स्टोर में प्रवेश नहीं करता, वह समय जब तक कि एक निश्चित कंपनी डिफॉल्ट नहीं करती या किसी मशीन में खराबी आने तक का समय।[2]
छात्र का टी-वितरण
छात्र के टी-वितरण का उपयोग वित्त में परिसंपत्ति रिटर्न के संभाव्य मॉडल के रूप में किया जाता है। टी-वितरण का घनत्व कार्य निम्नलिखित समीकरण द्वारा दिया गया है:[2]
एन के बड़े मानों के लिए, टी-वितरण मानक सामान्य वितरण से महत्वपूर्ण रूप से भिन्न नहीं होता है। आमतौर पर, मान n> 30 के लिए, टी-वितरण को मानक सामान्य वितरण के बराबर माना जाता है।
अन्य वितरण
संयुक्त अनुरूपण
पूरी तरह से अलग दुनिया के विचारों के उपयोग से अक्सर एक और एक ही प्रणाली का मॉडल बनाना संभव होता है। किसी समस्या के असतत घटना अनुकरण के साथ-साथ इसके निरंतर घटना अनुकरण (निरंतर प्रवाह को बाधित करने वाली असतत घटनाओं के साथ निरंतर अनुकरण) अंततः एक ही उत्तर की ओर ले जा सकते हैं। हालांकि कभी-कभी, तकनीकें एक प्रणाली के बारे में विभिन्न सवालों के जवाब दे सकती हैं। यदि हमें आवश्यक रूप से सभी प्रश्नों का उत्तर देने की आवश्यकता है, या यदि हमें यह नहीं पता है कि मॉडल का उपयोग किस उद्देश्य के लिए किया जा रहा है, तो संयुक्त सतत/विच्छेद पद्धति को लागू करना सुविधाजनक है।[16] इसी तरह की तकनीकें असतत, स्टोचैस्टिक विवरण से समय और स्थान पर निर्भर तरीके से नियतात्मक, सातत्य विवरण में बदल सकती हैं।[17] इस तकनीक का उपयोग पारंपरिक गिलेस्पी एल्गोरिथम की तुलना में अनुकरण करने के लिए बहुत तेज होने के साथ-साथ छोटी प्रतिलिपि संख्याओं के कारण शोर को पकड़ने में सक्षम बनाता है। इसके अलावा, नियतात्मक सातत्य विवरण का उपयोग मनमाने ढंग से बड़े सिस्टम के अनुरूपण को सक्षम बनाता है।
मोंटे कार्लो अनुरूपण
मोंटे कार्लो विधि एक आकलन प्रक्रिया है। मुख्य विचार यह है कि यदि किसी यादृच्छिक चर के औसत मूल्य को जानना आवश्यक है और इसका वितरण नहीं बताया जा सकता है, और यदि वितरण से नमूने लेना संभव है, तो हम स्वतंत्र रूप से और औसत से नमूने लेकर इसका अनुमान लगा सकते हैं। उन्हें। यदि पर्याप्त नमूने हैं, तो बड़ी संख्या का कानून कहता है कि औसत सही मूल्य के करीब होना चाहिए। केंद्रीय सीमा प्रमेय कहता है कि औसत का सही मूल्य के आसपास गॉसियन वितरण होता है।[18]
एक सरल उदाहरण के रूप में, मान लीजिए कि हमें एक जटिल, अनियमित रूपरेखा वाली आकृति का क्षेत्रफल मापने की आवश्यकता है। मोंटे कार्लो दृष्टिकोण आकार के चारों ओर एक वर्ग बनाना और वर्ग को मापना है। फिर हम वर्ग में डार्ट्स को यथासंभव समान रूप से फेंकते हैं। आकार पर गिरने वाले डार्ट्स का अंश वर्ग के क्षेत्रफल के आकार के क्षेत्रफल का अनुपात देता है। वास्तव में, लगभग किसी भी अभिन्न समस्या, या किसी भी औसत समस्या को इस रूप में ढालना संभव है। यह बताने के लिए एक अच्छा तरीका होना जरूरी है कि क्या आप रूपरेखा के अंदर हैं और यह पता लगाने का एक अच्छा तरीका है कि कितने डार्ट फेंके जाएं। अंतिम लेकिन कम से कम हमें डार्ट्स को समान रूप से फेंकने की आवश्यकता नहीं है यानी एक अच्छे यादृच्छिक संख्या जनरेटर का उपयोग करना।[18]
आवेदन
मोंटे कार्लो पद्धति के उपयोग की व्यापक संभावनाएँ हैं:[1]
- प्रतिचयन विधि
- यादृच्छिक चर (जैसे पासा) के उत्पादन का उपयोग करते हुए सांख्यिकीय प्रयोग
- गणित (जैसे संख्यात्मक एकीकरण, एकाधिक समाकलन)
- स्थिरता अभियांत्रिकी
- परियोजना प्रबंधन (सिक्ससिग्मा)
- प्रायोगिक कण भौतिकी
- अनुरूपण
- जोखिम मापन या जोखिम प्रबंधन (जैसे जानकारी संग्रह मान अनुमान)
- अर्थशास्त्र (उदाहरण के लिए सबसे उपयुक्त मांग वक्र खोजना)
- प्रक्रिया अनुरूपण
- गतिविधि अनुसंधान
यादृच्छिक संख्या उत्पादन
अनुरूपण प्रयोगों (मोंटे कार्लो सहित) के लिए यादृच्छिक संख्या (चर के मान के रूप में) उत्पन्न करना आवश्यक है। समस्या यह है कि कंप्यूटर अत्यधिक नियतात्मक मशीन है - मूल रूप से, प्रत्येक प्रक्रिया के पीछे हमेशा एक एल्गोरिथ्म होता है, एक नियतात्मक संगणना जो इनपुट को आउटपुट में बदलती है; इसलिए परिभाषित अंतराल या सेट पर समान रूप से फैली हुई यादृच्छिक संख्या उत्पन्न करना आसान नहीं है।[1]
एक यादृच्छिक संख्या जनरेटर एक ऐसा उपकरण है जो संख्याओं के अनुक्रम का उत्पादन करने में सक्षम होता है जिसे नियतात्मक गुणों के साथ "आसानी से" पहचाना नहीं जा सकता। इस क्रम को तब प्रसंभाव्य संख्याओं का अनुक्रम कहा जाता है।[19]
एल्गोरिदम आमतौर पर छद्म यादृच्छिक संख्याओं पर भरोसा करते हैं, कंप्यूटर जनित संख्याएं एक प्रक्रिया के एक संभावित परिणाम का अहसास उत्पन्न करने के लिए वास्तविक यादृच्छिक संख्याओं की नकल करती हैं।[20]यादृच्छिक संख्या प्राप्त करने के तरीके लंबे समय से मौजूद हैं और कई अलग-अलग क्षेत्रों (जैसे वीडियो गेम) में उपयोग किए जाते हैं। हालाँकि, ये संख्याएँ एक निश्चित पूर्वाग्रह से ग्रस्त हैं। वर्तमान में वास्तव में यादृच्छिक अनुक्रम उत्पन्न करने के लिए अपेक्षित सर्वोत्तम विधियाँ प्राकृतिक विधियाँ हैं जो क्वांटम यांत्रिकी की यादृच्छिक प्रकृति का लाभ उठाती हैं।[19]
यह भी देखें
- नियतात्मक अनुकरण
- गिलेस्पी एल्गोरिथम
- नेटवर्क अनुरूपण
- नेटवर्क यातायात अनुरूपण
- अनुरूपण भाषा
- क्यूइंग सिद्धांत
- असंततकरण त्रुटि
- हाइब्रिड प्रसंभाव्य अनुरूपण
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 DLOUHÝ, M.; FÁBRY, J.; KUNCOVÁ, M.. Simulace pro ekonomy. Praha : VŠE, 2005.
- ↑ 2.0 2.1 2.2 2.3 2.4 Cite error: Invalid
<ref>
tag; no text was provided for refs namedASM2
- ↑ "द्विपद वितरण". Archived from the original on 2014-02-26. Retrieved 2014-01-25.
- ↑ Haight, Frank A. (1967). पोइसन वितरण की पुस्तिका. Wiley. OCLC 422367440.
- ↑ Sigman, Karl. "पॉसॉन प्रक्रियाएं, और यौगिक (बैच) पॉइसन प्रक्रियाएं" (PDF).
- ↑ 6.0 6.1 Stephen Gilmore, An Introduction to Stochastic Simulation - Stochastic Simulation Algorithms, University of Edinburgh, [online] available at http://www.doc.ic.ac.uk/~jb/conferences/pasta2006/slides/stochastic-simulation-introduction.pdf
- ↑ M A Gibson and J Bruck, Efficient exact stochastic simulation of chemical systems with many specias and many channels, J. Comp Phys., 104:1876–1899, 2000.
- ↑ Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems, J. Chem. Phys, 121(9):4059–4067, 2004.
- ↑ Gillespie, D.T. (1976). "युग्मित रासायनिक प्रतिक्रियाओं के स्टोचैस्टिक समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए एक सामान्य विधि". Journal of Computational Physics. 22 (4): 403–434. Bibcode:1976JCoPh..22..403G. doi:10.1016/0021-9991(76)90041-3.
- ↑ H.T. Banks, Anna Broido, Brandi Canter, Kaitlyn Gayvert,Shuhua Hu, Michele Joyner, Kathryn Link, Simulation Algorithms for Continuous Time Markov Chain Models, [online] available at http://www.ncsu.edu/crsc/reports/ftp/pdf/crsc-tr11-17.pdf
- ↑ Spill, F; Maini, PK; Byrne, HM (2016). "विरोधी प्रतिक्रियाओं को हटाकर स्टोकेस्टिक प्रक्रियाओं के सिमुलेशन का अनुकूलन". Journal of Chemical Physics. 144 (8): 084105. arXiv:1602.02655. Bibcode:2016JChPh.144h4105S. doi:10.1063/1.4942413. PMID 26931679. S2CID 13334842.
- ↑ Crespo-Márquez, A., R. R. Usano and R. D. Aznar, 1993, "Continuous and Discrete Simulation in a Production Planning System. A Comparative Study"
- ↑ Louis G. Birta, Gilbert Arbez (2007). Modelling and Simulation, p. 255. Springer.
- ↑ "Pole Balancing Tutorial".
- ↑ University of Notre Dame, Normal Distribution, [online] available at http://www3.nd.edu/~rwilliam/stats1/x21.pdf
- ↑ Francois E. Cellier, Combined Continuous/Discrete Simulation Applications, Techniques, and Tools
- ↑ Spill, F.; et al. (2015). "Hybrid approaches for multiple-species stochastic reaction–diffusion models". Journal of Computational Physics. 299: 429–445. arXiv:1507.07992. Bibcode:2015JCoPh.299..429S. doi:10.1016/j.jcp.2015.07.002. PMC 4554296. PMID 26478601.
- ↑ 18.0 18.1 Cosma Rohilla Shalizi, Monte Carlo, and Other Kinds of Stochastic Simulation, [online] available at http://bactra.org/notebooks/monte-carlo.html
- ↑ 19.0 19.1 Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms - chapitre 3 : Random Numbers (Addison-Wesley, Boston, 1998).
- ↑ Andreas hellander, Stochastic Simulation and Monte Carlo Methods, [online] available at http://www.it.uu.se/edu/course/homepage/bervet2/MCkompendium/mc.pdf
- (Slepoy 2008): Slepoy, A; Thompson, AP; Plimpton, SJ (2008). "A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks". Journal of Chemical Physics. 128 (20): 205101. Bibcode:2008JChPh.128t5101S. doi:10.1063/1.2919546. PMID 18513044.
- (Bratsun 2005): D. Bratsun; D. Volfson; J. Hasty; L. Tsimring (2005). "Delay-induced stochastic oscillations in gene regulation". PNAS. 102 (41): 14593–8. Bibcode:2005PNAS..10214593B. doi:10.1073/pnas.0503858102. PMC 1253555. PMID 16199522.
- (Cai 2007): X. Cai (2007). "Exact stochastic simulation of coupled chemical reactions with delays". J. Chem. Phys. 126 (12): 124108. Bibcode:2007JChPh.126l4108C. doi:10.1063/1.2710253. PMID 17411109.
- Hartmann, A.K. (2009). Practical Guide to Computer Simulations. World Scientific. ISBN 978-981-283-415-7. Archived from the original on 2009-02-11. Retrieved 2012-05-03.
- Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.7. Stochastic Simulation of Chemical Reaction Networks". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
- (Ramaswamy 2009): R. Ramaswamy; N. Gonzalez-Segredo; I. F. Sbalzarini (2009). "A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks". J. Chem. Phys. 130 (24): 244104. arXiv:0906.1992. Bibcode:2009JChPh.130x4104R. doi:10.1063/1.3154624. PMID 19566139. S2CID 4952205.
- (Ramaswamy 2010): R. Ramaswamy; I. F. Sbalzarini (2010). "A partial-propensity variant of the composition-rejection stochastic simulation algorithm for chemical reaction networks" (PDF). J. Chem. Phys. 132 (4): 044102. Bibcode:2010JChPh.132d4102R. doi:10.1063/1.3297948. PMID 20113014.
- (Ramaswamy 2011): R. Ramaswamy; I. F. Sbalzarini (2011). "A partial-propensity formulation of the stochastic simulation algorithm for chemical reaction networks with delays" (PDF). J. Chem. Phys. 134 (1): 014106. Bibcode:2011JChPh.134a4106R. doi:10.1063/1.3521496. PMID 21218996. S2CID 4949530.
बाहरी संबंध
- Software
- cayenne - Fast, easy to use Python package for stochastic simulations. Implementations of direct, tau-leaping, and tau-adaptive algorithms.
- StochSS - StochSS: Stochastic Simulation Service - A Cloud Computing Framework for Modeling and Simulation of Stochastic Biochemical Systems.
- ResAssure - Stochastic reservoir simulation software - solves fully implicit, dynamic three-phase fluid flow equations for every geological realisation.
- Cain - Stochastic simulation of chemical kinetics. Direct, next reaction, tau-leaping, hybrid, etc.
- pSSAlib - C++ implementations of all partial-propensity methods.
- StochPy - Stochastic modelling in Python
- STEPS - STochastic Engine for Pathway Simulation using swig to create Python interface to C/C++ code