पारस्परिक विशिष्टता

From Vigyanwiki

तार्किकता और प्रायोजनिक सिद्धांत में, यदि दो घटनाएं या प्रस्ताव सह-असंबद्ध या अलग हों, तो वे एक साथ समय पर नहीं घटित हो सकते हैं। एक स्पष्ट उदाहरण एक सिक्के के टॉस के परिणामों का सेट है, जिसके परिणामस्वरूप हेड या टेल हो सकते हैं, परंतु दोनों नहीं। एक सिक्के के एकल उछाल के परिणाम का स्पष्ट उदाहरण है, जिसमें हेड या टेल दोनों हो सकते हैं,परंतु दोनों एक साथ नहीं हो सकते है।

सिक्का उछाल के उदाहरण में, सिद्धांतानुसार, दोनों परिणाम संगठित रूप से व्यापक हैं, जिसका अर्थ है कि कम से कम एक परिणाम होना चाहिए, इसलिए ये दो संभावनाएं साथ में सभी संभावनाओं को पूर्ण करती हैं।[1] यद्यपि,सभी सह-असंबद्ध घटनाएं संगठित रूप से व्यापक नहीं होती हैं। उदाहरण के रूप में, एक छ: मुखी पासा के एकल रोल के परिणाम 1 और 4 सह-असंबद्ध हैं दोनों एक साथ नहीं हो सकते, परंतु ये सम्पूर्ण रूप से व्यापक नहीं हैं, तथा अन्य संभावित परिणाम 2, 3, 5, 6 हैं।

तर्क

तार्किकता में, दो सह-असंबद्ध प्रस्ताव ऐसे प्रस्ताव हैं जो तार्किक संभावना एक ही अर्थ में एक साथ सत्य नहीं हो सकते हैं। अधिकांश संदर्भों पर यदि दो से अधिक प्रस्ताव सह-असंबद्ध हैं, तो यह अर्थ होता है कि यदि एक सत्य होता है तो दूसरा सत्य नहीं हो सकता है, या कम से कम एक में से कोई एक सत्य नहीं हो सकता है। या उनमें से कम से कम एक सत्य नहीं हो सकता है। शब्द युग्‍मानूसार परस्पर अनन्य शब्द का अर्थ यह होता है कि उनमें से दो एक साथ सत्य नहीं हो सकते। हैं।

संभावना

प्रायोजनिक सिद्धांत में, यदि किसी भी घटना के घटित होने से शेष n − 1 घटना के अघटित होने की बात प्रमाणित होती है, तो घटना E1, E2, En को सह-असंबद्ध कहा जाता है। इसलिए, दो परस्पर अपवर्जी घटनाएँ दोनों घटित नहीं हो सकतीं। इसलिए, दो सह-असंबद्ध घटना एक साथ घटित नहीं हो सकते। यह समरूपता के रूप में व्यक्त किया जाता है, हर दो घटना के प्रतिच्छेदन का रिक्त समुच्चय A ∩ B = ∅ होता है, इस परिणामस्वरूप, सह-असंबद्ध घटना का यह P(A ∩ B) = 0 गुण होता है।[2]उदाहरण के रूप में, एक मानक 52 कार्ड डेक में दो रंगों के साथ, एक कार्ड खींचना असंभव है जो लाल और क्लब दोनों हो, क्योंकि क्लब सदैव काले होते हैं।

लाल कार्ड और क्लब दोनों को निकालने के लिए कम से कम दो कार्ड बनाने होंगे। दो ड्रा में ऐसा करने की संभावना इस बात पर निर्भर करती है कि क्या पहले निकाले गए कार्ड को दूसरी ड्राइंग से पहले बदल दिया गया था क्योंकि प्रतिस्थापन के बिना पहला कार्ड निकाले जाने के बाद एक कार्ड कम होता है। एकल इवेंट्स (लाल और क्लब) की संभावनाओं को जोड़ने के बजाय गुणा किया जाता है। एकता के बिना दो खींचाव में एक लाल कार्ड और एक क्लब खींचने की संभावना फिर 26/52 × 13/51 × 2 = 676/2652, यानी 13/51 होगी। पुनर्स्थापन के साथ, संभावना 26/52 × 13/52 × 2 = 676/2704, यानी 13/52 होगी।

प्रायोजितता सिद्धांत में, शब्द "या" दोनों इवेंट्स के साथ दोनों के होने की संभावना को सम्भव बताने की अनुमति देता है। एक या दोनों घटना के होने की संभावना P(A ∪ B) के रूप में दर्शायी जाती है और सामान्यतः, यह P(A) + P(B) – P(A ∩ B) के बराबर होती है। इसलिए, लाल कार्ड या एक राजा खींचने के विषय में, एक लाल राजा, एक लाल गैर-राजा या एक काला राजा खींचना एक सफलता के रूप में माना जाता है। मानक 52 कार्ड डेक में, इसमें बीसबाईस लाल कार्ड और चार राजे होते हैं, जिनमें से दो लाल होते हैं, इसलिए एक लाल या राजा खींचने की संभावना 26/52 + 4/52 – 2/52 = 28/52 होती है।

संगठित रूप से घटनाएं उन संभावित परिणामों द्वारा पूरी होती हैं, जिनके द्वारा उनके संभावित परिणाम खत्म हो जाते हैं, इसलिए कम से कम एक परिणाम जरूर होगा। कम से कम एक घटना होने की संभावना का प्रायिकतन एक के बराबर होता है। उदाहरण के रूप में, सिक्का फेंकने के लिए सिद्धांततः केवल दो संभावित परिणाम हो सकते हैं। सिक्का को हेड की ओर फेंकना और सिक्का को टेल्स की ओर फेंकना संगठित रूप से संपूर्ण होने वाली घटनाएं हैं, और हेड या टेल्स को फेंकने की संभावना एक है। घटनाएँ परस्पर अनन्य और सामूहिक रूप से संपूर्ण दोनों हो सकती हैं।[3]सिक्का फेंकने के विषय में, हेड फेंकना और टेल्स फेंकना भी परस्पर अविरोधी घटनाएं हैं। एक परीक्षण के लिए दोनों परिणाम नहीं हो सकते हैं। हेड फेंकने की संभावना और टेल्स फेंकने की संभावना को जोड़कर 1 की संभावना 1/2 + 1/2 = 1 प्राप्त की जा सकती है।[4]


सांख्यिकी

सांख्यिकी आँकड़ों और प्रतिगमन विश्लेषण में, एक स्वतंत्र चर जो केवल दो संभावित मान ले सकता है, एक डमी चर कहलाता है। उदाहरण के लिए, यह मान 0 पर ले सकता है यदि अवलोकन एक सफेद विषय का है या 1 यदि अवलोकन एक काले विषय का है। दो संभावित मानों के साथ जुड़े दो संभावित श्रेणियाँ परस्पर अविरोधी होती हैं, इसलिए कोई भी अवलोकन एक से अधिक श्रेणी में नहीं पड़ता है, और ये श्रेणियाँ संपूर्ण होती हैं, इसलिए हर अवलोकन किसी न किसी श्रेणी में आता है। कभी-कभी तीन या उससे अधिक संभावित श्रेणियाँ होती हैं, जो यथापारस्परिक रूप से अविरोधी होती हैं और संपूर्णतः संयोज्य होती हैं - उदाहरण के लिए, 18 वर्ष से कम आयु, 18 से 64 वर्ष की आयु और 65 वर्ष या उससे अधिक आयु करकी होती है।

इस विषय में, एक डमी चरों का समूह निर्मित किया जाता है, प्रत्येक डमी चर में दो परस्पर अविरोधी और समूचे श्रेणियाँ होती हैं इस उदाहरण में, एक डमी चर की मान 1 होगी यदि आयु 18 से कम है, और अन्यथा 0 होगी; दूसरी डमी चर की मान 1 होगी यदि आयु 18-64 के बीच है, और अन्यथा 0 होगी। इस रूप में, डमी चर जोड़ों के मान (1,0) 18 से कम आयु, (0,1) 18 से 64 के बीच, या (0,0) 65 या उससे अधिक आयु हो सकते हैं परंतु (1,1) नहीं हो सकता, क्योंकि यह अर्थहीन रूप से इसका प्रभाव होगा कि एक देखी गई विषय यथार्थ रूप से 18 से कम आयु वाला है और 18 से 64 के बीच भी है। पुनः डमी चरों को एक प्रतिगमन में स्वतंत्र चरों के रूप में सम्मिलित किया जा सकता है। डमी चरों की संख्या हमेशा श्रेणियों की संख्या से एक कम होती है: जब दो श्रेणियाँ काला और सफेद होती हैं, तो उन्हें अलग करने के लिए केवल एक डमी चर की आवश्यकता होती है, जबकि तीन आयु श्रेणियों के साथ दो डमी चरों की आवश्यकता होती है।

ऐसे गुणात्मक डेटा का उपयोग आश्रित चरों के लिए भी किया जा सकता है। उदाहरण के लिए, एक शोधकर्ता व्याख्यात्मक चर के रूप में परिवार की आय या जाति का उपयोग करके यह अनुमान लगा सकता है कि किसी को गिरफ्तार किया गया है या नहीं। यहाँ समझाया जाने वाला चर एक डमी चर है जो 0 के बराबर होता है यदि देखे गए विषय को गिरफ्तार नहीं किया जाता है और 1 के बराबर होता है यदि विषय को गिरफ्तार नहीं किया जाता है। ऐसी स्थिति में, साधारण न्यूनतम वर्ग को व्यापक रूप से अपर्याप्त के रूप में देखा जाता है; इसके अतिरिक्त प्रोबिट प्रतिगमन या संभार तन्त्र परावर्तन का उपयोग किया जाता है। इसके अतिरिक्त, कभी-कभी आश्रित चर के लिए तीन या अधिक श्रेणियां होती हैं - उदाहरण के लिए, कोई शुल्क नहीं, शुल्क और मौत की सजा इस स्थिति में, बहुराष्ट्रीय प्रोबिट या बहुराष्ट्रीय लॉगिट तकनीक का उपयोग किया जाता है।

यह भी देखें

टिप्पणियाँ

  1. Miller, Scott; Childers, Donald (2012). संभाव्यता और यादृच्छिक प्रक्रियाएं (Second ed.). Academic Press. p. 8. ISBN 978-0-12-386981-4. The sample space is the collection or set of 'all possible' distinct (collectively exhaustive and mutually exclusive) outcomes of an experiment.
  2. intmath.com; Mutually Exclusive Events. Interactive Mathematics. December 28, 2008.
  3. Scott Bierman. A Probability Primer. Carleton College. Pages 3-4.
  4. "गैर-परस्पर अनन्य परिणाम। क्लिफ्स नोट्स।". Archived from the original on 2009-05-28. Retrieved 2009-07-10.


संदर्भ