विस्तार

From Vigyanwiki

तर्क में, व्यापकता, या विस्तारित समानता, उन सिद्धांतों को संदर्भित करती है जो वस्तुओं को समानता (गणित) के रूप में आंकते हैं यदि उनके पास समान बाहरी गुण हैं। यह गहनता की अवधारणा के विपरीत है, जो इस बात से संबंधित है कि वस्तुओं की आंतरिक परिभाषाएं समान हैं या नहीं।

उदाहरण

दो फलन (गणित) f और g मैपिंग पर और प्राकृतिक संख्याओं पर विचार करें, जिन्हें निम्नानुसार परिभाषित किया गया है:

  • f(n) ज्ञात करने के लिए पहले n में 5 जोड़ें, फिर 2 से गुणा करें।
  • g(n) ज्ञात करने के लिए, पहले n को 2 से गुणा करें, फिर 10 जोड़ें।

ये कार्य व्यापक रूप से समान हैं; समान निविष्टि दिए जाने पर, दोनों फलन हमेशा समान मान उत्पन्न करते हैं। लेकिन कार्यों की परिभाषाएँ समान नहीं हैं, और उस गहन अर्थ में कार्य समान नहीं हैं।

इसी तरह, प्राकृतिक भाषा में कई विधेय (संबंध) होते हैं जो अंतःस्थली रूप से भिन्न होते हैं लेकिन व्यापक रूप से समान होते हैं। उदाहरण के लिए, मान लीजिए कि एक शहर में जो नाम का एक व्यक्ति है, जो शहर का सबसे बुजुर्ग व्यक्ति भी है। फिर, दो विधेय जो कहा जा रहा है, और इस शहर में सबसे पुराना व्यक्ति होने के नाते अंतःस्थली रूप से अलग हैं, लेकिन इस शहर की (वर्तमान) आबादी के लिए व्यापक रूप से बराबर हैं।

गणित में

ऊपर चर्चा की गई फलन समानता की विस्तृत परिभाषा, आमतौर पर गणित में उपयोग की जाती है। कभी-कभी अतिरिक्त जानकारी एक फलन से जुड़ी होती है, जैसे कि एक स्पष्ट कोडोमेन, इस स्थिति में दो फलन को न केवल सभी मानों पर सहमत होना चाहिए, बल्कि समान कोडोमेन भी होना चाहिए, समान होने के लिए इसके विपरीत, सामान्य परिभाषा[clarification needed] गणित में एक फलन का अर्थ है कि समान फलन में फलन का समान डोमेन होना चाहिए।

एक समान विस्तारित परिभाषा आमतौर पर संबंध (गणित) के लिए नियोजित होती है: दो संबंधों को समान कहा जाता है यदि उनका एक ही विस्तार (विधेय तर्क) हो।

समुच्चय सिद्धांत में, विस्तारवाद का अभिगृहीत कहता है कि दो समुच्चय (गणित) समान होते हैं यदि और केवल यदि उनमें समान तत्व होते हैं। सेट सिद्धांत में औपचारिक रूप से गणित में, संबंधों की पहचान करना आम बात है - और, सबसे महत्वपूर्ण, कार्य (गणित) - जैसा कि ऊपर कहा गया है, उनके विस्तार के साथ, ताकि एक ही विस्तार के साथ दो संबंधों या कार्यों को अलग करना असंभव हो।

अन्य गणितीय वस्तुओं का निर्माण भी इस तरह से किया जाता है कि समानता की सहज धारणा सेट-लेवल विस्तारात्मक समानता से सहमत होती है; इस प्रकार, समान क्रम वाले युग्मों में समान तत्व होते हैं, और एक समुच्चय के तत्व जो एक तुल्यता संबंध से संबंधित होते हैं, एक ही तुल्यता वर्ग के होते हैं।

प्रकार सिद्धांत | गणित की प्रकार-सैद्धांतिक नींव आम तौर पर इस अर्थ में विस्तारित नहीं होती है, और आमतौर पर गहन समानता और अधिक सामान्य समानता संबंध (जिसमें आम तौर पर खराब रचनावाद (गणित) या निर्णायकता (तर्क) गुण होते हैं), के बीच अंतर बनाए रखने के लिए सेटोइड्स का उपयोग किया जाता है।

यह भी देखें

संदर्भ