नियमित उपाय

From Vigyanwiki
Revision as of 15:42, 25 May 2023 by alpha>Indicwiki (Created page with "गणित में, टोपोलॉजिकल स्पेस पर एक नियमित माप एक माप (गणित) है, जिसके...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, टोपोलॉजिकल स्पेस पर एक नियमित माप एक माप (गणित) है, जिसके लिए प्रत्येक मापने योग्य सेट को ऊपर से खुले मापनीय सेटों द्वारा और नीचे से कॉम्पैक्ट मापने योग्य सेटों द्वारा अनुमानित किया जा सकता है।

परिभाषा

चलो (एक्स, टी) एक सांस्थितिक स्थान हो और चलो Σ एक सिग्मा बीजगणित | σ-बीजगणित एक्स पर। एक्स का एक मापने योग्य सबसेट ए को 'आंतरिक नियमित' कहा जाता है यदि

और कहा कि अगर बाहरी नियमित हो

  • एक माप को आंतरिक नियमित माप कहा जाता है यदि प्रत्येक मापने योग्य सेट आंतरिक नियमित है। कुछ लेखक एक अलग परिभाषा का उपयोग करते हैं: एक माप को आंतरिक नियमित कहा जाता है यदि प्रत्येक खुला मापने योग्य सेट आंतरिक नियमित हो।
  • एक माप को बाहरी नियमित कहा जाता है यदि प्रत्येक मापने योग्य सेट बाहरी नियमित हो।
  • एक माप को नियमित कहा जाता है यदि यह बाहरी नियमित और आंतरिक नियमित है।

उदाहरण

नियमित उपाय

आंतरिक नियमित उपाय जो बाहरी नियमित नहीं हैं

  • अपनी सामान्य टोपोलॉजी के साथ वास्तविक रेखा पर माप का एक उदाहरण जो बाहरी नियमित नहीं है, वह उपाय μ है , , और किसी अन्य सेट के लिए .
  • समतल पर बोरेल माप जो किसी भी बोरेल सेट को उसके क्षैतिज खंडों के (1-आयामी) उपायों का योग प्रदान करता है, वह आंतरिक नियमित है, लेकिन बाहरी नियमित नहीं है, क्योंकि प्रत्येक गैर-खाली खुले सेट में अनंत माप होता है। इस उदाहरण का एक रूप लेबेस्गु माप के साथ वास्तविक रेखा की अनगिनत प्रतियों का एक असंबद्ध संघ है।
  • स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ स्पेस पर बोरेल माप μ का एक उदाहरण जो आंतरिक नियमित, σ-परिमित और स्थानीय रूप से परिमित है लेकिन बाहरी नियमित नहीं है, द्वारा दिया गया है Bourbaki (2004, Exercise 5 of section 1) निम्नलिखित नुसार। टोपोलॉजिकल स्पेस एक्स ने बिंदुओं (0, y) के वाई-अक्ष द्वारा दिए गए वास्तविक विमान के सबसेट को बिंदुओं (1/n, m/n) के साथ एक साथ सेट किया है।2) m,n धनात्मक पूर्णांकों के साथ। टोपोलॉजी इस प्रकार दी गई है। एकल अंक (1/n,m/n2) सभी खुले सेट हैं। बिंदु (0,y) के पड़ोस का एक आधार वेज द्वारा दिया जाता है जिसमें फॉर्म (u,v) के X में सभी बिंदु शामिल होते हैं |v − y| ≤ |यू| ≤ 1/n धनात्मक पूर्णांक n के लिए। यह स्पेस एक्स स्थानीय रूप से कॉम्पैक्ट है। माप μ को y-अक्ष को माप 0 देकर और बिंदु (1/n,m/n) देकर दिया जाता है2) का माप 1/n है3</उप>। यह माप आंतरिक नियमित और स्थानीय रूप से परिमित है, लेकिन बाहरी नियमित नहीं है क्योंकि y-अक्ष वाले किसी भी खुले सेट में माप अनंत है।

बाहरी नियमित उपाय जो आंतरिक नियमित नहीं हैं

  • यदि μ पिछले उदाहरण में आंतरिक नियमित माप है, और M, M(S) = inf द्वारा दिया गया माप हैUSμ(यू) जहां बोरेल सेट एस वाले सभी खुले सेटों पर इंफ लिया जाता है, फिर एम स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ स्पेस पर बाहरी नियमित रूप से सीमित बोरेल माप होता है जो मजबूत अर्थों में आंतरिक नियमित नहीं होता है, हालांकि सभी खुले सेट हैं आंतरिक नियमित तो यह कमजोर अर्थों में आंतरिक नियमित है। उपाय एम और μ सभी खुले सेटों, सभी कॉम्पैक्ट सेटों और उन सभी सेटों पर मेल खाते हैं जिन पर एम का परिमित माप है। वाई-अक्ष में अनंत एम-माप है, हालांकि इसके सभी कॉम्पैक्ट सबसेट में माप 0 है।
  • असतत टोपोलॉजी के साथ एक मापने योग्य कार्डिनल में एक बोरेल संभाव्यता माप होता है जैसे कि प्रत्येक कॉम्पैक्ट सबसेट में माप 0 होता है, इसलिए यह माप बाहरी नियमित है लेकिन आंतरिक नियमित नहीं है। मापने योग्य कार्डिनल्स का अस्तित्व ZF सेट सिद्धांत में सिद्ध नहीं किया जा सकता है लेकिन (2013 तक) इसके अनुरूप माना जाता है।

=== उपाय जो न तो आंतरिक हैं और न ही बाहरी नियमित === हैं

  • ओपन इंटरवल द्वारा उत्पन्न टोपोलॉजी के साथ, पहले अनगिनत ऑर्डिनल Ω के बराबर सभी ऑर्डिनल्स का स्थान एक कॉम्पैक्ट हौसडॉर्फ स्पेस है। वह उपाय जो बोरेल सेटों को माप 1 प्रदान करता है जिसमें काउंटेबल ऑर्डिनल्स का एक अनबाउंड क्लोज्ड सबसेट होता है और अन्य बोरेल सेटों को 0 असाइन करता है, वह एक बोरेल प्रायिकता माप है जो न तो आंतरिक नियमित है और न ही बाहरी नियमित।

यह भी देखें

  • बोरेल का नियमित उपाय करें
  • रेडॉन माप
  • Lebesgue उपाय के लिए नियमितता प्रमेय

संदर्भ

  • Billingsley, Patrick (1999). Convergence of Probability Measures. New York: John Wiley & Sons, Inc. ISBN 0-471-19745-9.
  • Parthasarathy, K. R. (2005). Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI. p. xii+276. ISBN 0-8218-3889-X. MR2169627 (See chapter 2)
  • Dudley, R. M. (1989). Real Analysis and Probability. Chapman & Hall.